14,558 research outputs found
Pion Charge Exchange on Deuterium
We investigate quantum corrections to a classical intranuclear cascade
simulation of pion single charge exchange on the deuteron. In order to separate
various effects the orders of scattering need to be distinguished and, to that
end, we develop signals for each order of scattering corresponding to
quasi-free conditions. Quantum corrections are evaluated for double scattering
and are found to be large. Global agreement with the data is good.Comment: 30 pages, 12 figure
Anisotropic imbibition on surfaces patterned with polygonal posts
We present and interpret lattice Boltzmann simulations of thick films
spreading on surfaces patterned with polygonal posts. We show that the
mechanism of pinning and depinning differs with the direction of advance, and
demonstrate that this leads to anisotropic spreading within a certain range of
material contact angles.Comment: DSFD Proceedings 201
Individual sequences in large sets of gene sequences may be distinguished efficiently by combinations of shared sub-sequences
BACKGROUND: Most current DNA diagnostic tests for identifying organisms use specific oligonucleotide probes that are complementary in sequence to, and hence only hybridise with the DNA of one target species. By contrast, in traditional taxonomy, specimens are usually identified by 'dichotomous keys' that use combinations of characters shared by different members of the target set. Using one specific character for each target is the least efficient strategy for identification. Using combinations of shared bisectionally-distributed characters is much more efficient, and this strategy is most efficient when they separate the targets in a progressively binary way. RESULTS: We have developed a practical method for finding minimal sets of sub-sequences that identify individual sequences, and could be targeted by combinations of probes, so that the efficient strategy of traditional taxonomic identification could be used in DNA diagnosis. The sizes of minimal sub-sequence sets depended mostly on sequence diversity and sub-sequence length and interactions between these parameters. We found that 201 distinct cytochrome oxidase subunit-1 (CO1) genes from moths (Lepidoptera) were distinguished using only 15 sub-sequences 20 nucleotides long, whereas only 8–10 sub-sequences 6–10 nucleotides long were required to distinguish the CO1 genes of 92 species from the 9 largest orders of insects. CONCLUSION: The presence/absence of sub-sequences in a set of gene sequences can be used like the questions in a traditional dichotomous taxonomic key; hybridisation probes complementary to such sub-sequences should provide a very efficient means for identifying individual species, subtypes or genotypes. Sequence diversity and sub-sequence length are the major factors that determine the numbers of distinguishing sub-sequences in any set of sequences
Stable Kalman filters for processing clock measurement data
Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given
Pion double charge exchange on 4He
The doubly differential cross sections for the He
reaction were calculated using both a two-nucleon sequential single charge
exchange model and an intranuclear cascade code. Final state interactions
between the two final protons which were the initial neutrons were included in
both methods. At incident pion energies of 240 and 270 MeV the low-energy peak
observed experimentally in the energy spectrum of the final pions can be
understood only if the contribution of pion production is included. The
calculated cross sections are compared with data.Comment: 25 pages, 9 figure
Muon-spin rotation measurements of the vortex state in SrRuO: type-1.5 superconductivity, vortex clustering and a crossover from a triangular to a square vortex lattice
Muon-spin rotation has been used to probe vortex state in SrRuO. At
moderate fields and temperatures a lattice of triangular symmetry is observed,
crossing over to a lattice of square symmetry with increasing field and
temperature. At lower fields it is found that there are large regions of the
sample that are completely free from vortices which grow in volume as the
temperature falls. Importantly this is accompanied by {\it increasing} vortex
density and increasing disorder within the vortex-cluster containing regions.
Both effects are expected to result from the strongly temperature-dependent
long-range vortex attractive forces arising from the multi-band chiral-order
superconductivity.Comment: 13 pages, 4 figure
Description of the fluctuating colloid-polymer interface
To describe the full spectrum of surface fluctuations of the interface
between phase-separated colloid-polymer mixtures from low scattering vector q
(classical capillary wave theory) to high q (bulk-like fluctuations), one must
take account of the interface's bending rigidity. We find that the bending
rigidity is negative and that on approach to the critical point it vanishes
proportionally to the interfacial tension. Both features are in agreement with
Monte Carlo simulations.Comment: 5 pages, 3 figures, 1 table. Accepted for publication in Phys. Rev.
Let
Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities
In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of ‘assessment load’ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students’ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that ‘more’ is always better, proposing that lighter assessment loads may make room for ‘slow’ and deep learning
Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: A molecular dynamics simulation study
A method is proposed to compute the interfacial free energy of a
Lennard-Jones system in contact with a structured wall by molecular dynamics
simulation. Both the bulk liquid and bulk face-centered-cubic crystal phase
along the (111) orientation are considered. Our approach is based on a
thermodynamic integration scheme where first the bulk Lennard-Jones system is
reversibly transformed to a state where it interacts with a structureless flat
wall. In a second step, the flat structureless wall is reversibly transformed
into an atomistic wall with crystalline structure. The dependence of the
interfacial free energy on various parameters such as the wall potential, the
density and orientation of the wall is investigated. The conditions are
indicated under which a Lennard-Jones crystal partially wets a flat wall.Comment: 15 pages, 11 figure
- …