6,722 research outputs found

    Semiclassical Accuracy in Phase Space for Regular and Chaotic Dynamics

    Full text link
    A phase-space semiclassical approximation valid to O()O(\hbar) at short times is used to compare semiclassical accuracy for long-time and stationary observables in chaotic, stable, and mixed systems. Given the same level of semiclassical accuracy for the short time behavior, the squared semiclassical error in the chaotic system grows linearly in time, in contrast with quadratic growth in the classically stable system. In the chaotic system, the relative squared error at the Heisenberg time scales linearly with eff\hbar_{\rm eff}, allowing for unambiguous semiclassical determination of the eigenvalues and wave functions in the high-energy limit, while in the stable case the eigenvalue error always remains of the order of a mean level spacing. For a mixed classical phase space, eigenvalues associated with the chaotic sea can be semiclassically computed with greater accuracy than the ones associated with stable islands.Comment: 9 pages, 6 figures; to appear in Physical Review

    Fractional \hbar-scaling for quantum kicked rotors without cantori

    Get PDF
    Previous studies of quantum delta-kicked rotors have found momentum probability distributions with a typical width (localization length LL) characterized by fractional \hbar-scaling, ie L2/3L \sim \hbar^{2/3} in regimes and phase-space regions close to `golden-ratio' cantori. In contrast, in typical chaotic regimes, the scaling is integer, L1L \sim \hbar^{-1}. Here we consider a generic variant of the kicked rotor, the random-pair-kicked particle (RP-KP), obtained by randomizing the phases every second kick; it has no KAM mixed phase-space structures, like golden-ratio cantori, at all. Our unexpected finding is that, over comparable phase-space regions, it also has fractional scaling, but L2/3L \sim \hbar^{-2/3}. A semiclassical analysis indicates that the 2/3\hbar^{2/3} scaling here is of quantum origin and is not a signature of classical cantori.Comment: 5 pages, 4 figures, Revtex, typos removed, further analysis added, authors adjuste

    Gamma radiation background measurements from Spacelab 2

    Get PDF
    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered

    Short-Range Ordered Phase of the Double-Exchange Model in Infinite Dimensions

    Get PDF
    Using dynamical mean-field theory, we have evaluated the magnetic instabilities and T=0 phase diagram of the double-exchange model on a Bethe lattice in infinite dimensions. In addition to ferromagnetic (FM) and antiferromagnetic (AF) phases, we also study a class of disordered phases with magnetic short-range order (SRO). In the weak-coupling limit, a SRO phase has a higher transition temperature than the AF phase for all fillings p below 1 and can even have a higher transition temperature than the FM phase. At T=0 and for small Hund's coupling J_H, a SRO state has lower energy than either the FM or AF phases for 0.26\le p 0 limit but appears for any non-zero value of J_H.Comment: 11 pages, 3 figures, published versio

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    On the Spectrum of the Resonant Quantum Kicked Rotor

    Full text link
    It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.Comment: Description of related published work has been expanded in the Introductio

    Spin Diffusion in Double-Exchange Manganites

    Full text link
    The theoretical study of spin diffusion in double-exchange magnets by means of dynamical mean-field theory is presented. We demonstrate that the spin-diffusion coefficient becomes independent of the Hund's coupling JH in the range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal magnetoresistive manganites in the metallic part of their phase diagram. Our study reveals a close correspondence as well as some counterintuitive differences between the results on Bethe and hypercubic lattices. Our results are in accord with neutron scattering data and with previous theoretical work for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio
    corecore