2,852 research outputs found

    Fast and dense magneto-optical traps for Strontium

    Full text link
    We improve the efficiency of sawtooth-wave-adiabatic-passage (SWAP) cooling for strontium atoms in three dimensions and combine it with standard narrow-line laser cooling. With this technique, we create strontium magneto-optical traps with 6×1076\times 10^7 bosonic 88^{88}Sr (1×1071\times 10^7 fermionic 87^{87}Sr) atoms at phase-space densities of 2×10−32\times 10^{-3} (1.4×10−41.4\times 10^{-4}). Our method is simple to implement and is faster and more robust than traditional cooling methods.Comment: 9 pages, 6 figure

    Experimental proposal for accurate determination of the phase relaxation time and testing a formation of thermalized non-equilibrated matter in highly excited quantum many-body systems

    Full text link
    We estimate how accurate the phase relaxation time of quantum many-body systems can be determined from data on forward peaking of evaporating protons from a compound nucleus. The angular range and accuracy of the data needed for a reliable determination of the phase relaxation time are evaluated. The general method is applied to analyze the inelastic scattering of 18 MeV protons from Pt for which previously measured double differential cross sections for two angles in the evaporating domain of the spectra show a strong forward peaking. A new experiment for an improved determination of the phase relaxation time is proposed. The experiment is also highly desirable for an accurate test of a formation of thermalized non-equilibrated matter in quantum many-body systems.Comment: 5 pages, 3 figure

    Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei

    Get PDF
    We study low-lying multipole strength in neutron-halo nuclei. The strength depends only on a few low-energy constants: the neutron separation energy, the asymptotic normalization coefficient of the bound state wave function, and the scattering length that contains the information on the interaction in the continuum. The shape of the transition probability shows a characteristic dependence on few scaling parameters and the angular momenta. The total E1 strength is related to the root-mean-square radius of the neutron wave function in the ground state and shows corresponding scaling properties. We apply our approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion of example, accepted for publication in Phys. Rev. Let

    Systematic study of Optical Feshbach Resonances in an ideal gas

    Full text link
    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect in an ultracold gas of bosonic 88^{88}Sr. A systematic measurement of three resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve clarity. Extended supplementary material. 4 pages, 4 figures; includes supplementary material 8 pages, 4 figures. Submitted to Physical Review Letter

    State-Dependent Optical Lattices for the Strontium Optical Qubit

    No full text
    We demonstrate state-dependent optical lattices for the Sr optical qubit at the tune-out wavelength for its ground state. We tightly trap excited state atoms while suppressing the effect of the lattice on ground state atoms by more than four orders of magnitude. This highly independent control over the qubit states removes inelastic excited state collisions as the main obstacle for quantum simulation and computation schemes based on the Sr optical qubit. Our results also reveal large discrepancies in the atomic data used to calibrate the largest systematic effect of Sr optical lattice clocks.Comment: 6 pages, 4 figures + 6 pages supplemental materia

    Conductance peaks in open quantum dots

    Full text link
    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance, TT, as a function of an arbitrary external parameter ZZ, is directly related to the autocorrelation function of T(Z)T(Z). The parameter ZZ can be associated to an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc.. The average density of maxima is found to be =αZ/Zc = \alpha_{Z}/Z_c, where αZ\alpha_{Z} is a universal constant and ZcZ_c is the conductance autocorrelation length, which is system specific. The analysis of does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as ZcZ_c.Comment: 5 pages, 5 figures, accepted to be published - Physical Review Letter

    Nonequilibrium Response from the dissipative Liouville Equation

    Full text link
    The problem of response of nonequilibrium systems is currently under intense investigation. We propose a general method of solution of the Liouville Equation for thermostatted particle systems subjected to external forces which retains only the slow degrees of freedom, by projecting out the majority of fast variables. Response formulae, extending the Green-Kubo relations to dissipative dynamics are provided, and comparison with numerical data is presented
    • …
    corecore