685 research outputs found

    ANTIDIABETIC ACTIVITY OF NIGELLA SATIVA L. SEED POWDER AND ITS COMBINATION WITH GLICLAZIDE IN ALLOXAN INDUCED DIABETIC MICE

    Get PDF
    Objective: In Indonesia, Nigella sativa (NS) has been widely used for the treatment of diabetes mellitus. The aim of this study was to evaluate the antidiabetic activity of its seed powder and its combination with gliclazide. Methods: NS was used in seed powder suspension form. At study's begin, Oral Glucose Tolerance Test (OGTT) was performed. And then the mice were induced with 60 mg/kg alloxan intravenously and were treated with 1300 mg/kg NS (NS1), 2000 mg/kg NS (NS2), 0,65 mg/kg gliclazide, and combination of NS1-gliclazide that administered orally for 3 weeks. NS1 was also administered daily to mice induced high-fat emulsion for 3 weeks. Results: The results showed that in OGTT, NS1 and NS2 inhibit the elevation of plasma glucose level after administering glucose. In mice induced alloxan, plasma glucose level in both NS1 and NS2 was significantly lower than diabetic control and gliclazide group. And NS2 showed more significantly less damage in Langerhans than the other groups. The combination did not showed a better effect than the single use. In mice induced high-fat emulsion, NSI improved the sensitivity of insulin by increasing KITT. Conclusion: The results suggest that NS has an antidiabetic activity by increasing insulin production and improving sensitivity of insulin. The combination NS with gliclazide was probably antagonism

    Development of Sustained-Release Microbeads of Nifedipine and In vitro Characterization

    Get PDF
    Purpose: To formulate and evaluate sustained-release microbeads of nifedipine for prolonged delivery.Methods: Nifedipine microbeads were prepared using sodium alginate and pectin in different ratios by ionic-gelation method. The microbeads were evaluated for surface morphology and shape by scanning electron microscopy (SEM), micromeritic properties, microencapsulation efficiency and in vitro drug release. The microbeads were also assessed by Fourier Transform Infra-red Spectroscopy (FTIR) and differential scanning calorimetry (DSC) to determine drug-polymer interaction, if any.Results: FTIR and DSC results indicate absence of interaction between the drug and polymers used. Good rheological behavior was demonstrated with an angle of repose < 30º, and Carr’s index and Hausner’s ratio of < 10% and < 1.12, respectively Microbead size, yield and entrapment efficiency were in the range of 695 to 733 um, 69 to 75% and 54 to 63%,  respectively. SEM revealed that the microbeads were discrete, largely spherical and free-flowing. Higuchi model was the best fit for the dissolution data and followed non-Fickian diffusion mechanism.Conclusion: The microbead formulation would be suitable for sustained release of nifedipine.Keywords: Microbead, Nifedipine, Alginate, Ionic gelation, Pectin, Higuchi model, Non-Fickian diffusion

    Temperature model verification and beam characterization on a solid target system

    Get PDF
    Introduction Temperature modeling using Finite Element Analysis (FEA) is widely used by particle beam-line designers as a useful tool to determine the thermal performance of an irradiated target system. A comparison study was performed between FEA calculated temperatures on platinum with experimental results using direct thermocouple measurements. The aims are to determine the best beam model for future solid target design, determine the maximum target current for different target materials and the temperature tolerance for any modification to our existing solid targetry system. Material and Methods The theoretical temperature of the target sys-tem was determined using SolidWorks 2013 with Flow Simulation Analysis (FSA) module. The FSA module determines the maximum temperature inside the target material given the global conditions (material specification, flow rates, boundary conditions, etc.) for a given target current. The proton beam was modeled as a volumetric heat source inside the target material based on the distribution of energy loss in the material along the beam axis. The method used by Comor, et al1 was used in this study. The method segmented the target material into five individual layers, each layer being 50 m thick. The energy lost per layer was calculated using SRIM3 and converted into the power lost per layer. A thickness of 250 μm of platinum completely stops the impinging proton beam at 11.5 MeV with the highest deposition of power per layer corresponding to the Bragg peak. The target material used in the simulation reflects the physical target disk used for temperature measurements (platinum, dia. 25.0 mm, thickness 2.0 mm) with two K-type thermocouples (dia. 0.5 mm, stainless steel sheath) embedded in the platinum disk. One thermocouple is located in the geometric center, while the other is located at a radial position 8 mm from center. The outer thermocouple is to determine the peripheral temperature near the o-ring seal. Temperature was maintained below the melting point for the material (Viton®, melting point 220 °C) during the irradiation to ensure the integrity of the water cooling system. The solid targetry system used in this study is an in-house built, significantly modified version2 of a published design1. The solid target system is mounted onto an 18/18MeV IBA Cyclotron with dual ion source, on a 300mm beam-line with no internal optics or steering magnets. A graphite collimator reduces the beam to 10mm in diameter and a degrader is used to reduce the proton beam energy to 11.5 MeV, considered suitable for production of radiometal PET isotopes 89Zr and 64Cu. Temperature was measured with and without the 300 mm beam-line to compare the effects of beam divergence on the solid target (FIGS. 1 and 2). The experiment was conducted using both H− ion sources with different ion-to-puller extraction gaps (ion source 1 is 1.55 mm with ion source 2 at 1.90 mm). The setting of the ion-to-puller gap changes the focusing of the accelerated beam inside the cavity. Results and Discussion The segmented beam model was used to calculate the temperature on and within the target, as well as the maximum temperature of the bulk material. The first segment is the leading segment of the material irradiated by the incident proton beam. Results are shown in TABLE 2. Target temperatures were measured experimentally under two different conditions; target attached at the end of a 300mm beam-line and target attached directly to the cyclotron. The temperature was measured experimentally using the platinum disk with 2 thermocouples inside the bulk target material irradiated on the end of a 300mm beam-line. The measured temperature is shown in TABLE 2. The variation between ion source 1 and 2 for the temperature measured in the center was 11–15 %, while the variation on the radial position was 2–6 %. A smaller ion-to-puller extraction distance (ion source 1) reduces the cross-sectional area of the accelerated beam; the consequent high proton current density (10mm diameter collimated beam) increases the temperature inside the bulk material for a fixed target current. The highest observed radial temperature was 93 °C, with target current of 50 μA using ion source 1. This is well below the melting point for the o-ring seal. The temperature measured experimentally using the same platinum disk with no beam-line is shown in TABLE 4. A temperature difference of up to 7 % was measured between ion source 1 and 2 at the exit port without the beam-line, while the maximum variation on the radial position was 3 %. A comparison between the calculated theoretical and measured temperatures is shown in FIGS. 3 to 6. The temperatures calculated by the FEA model underestimate the temperature regardless of target position (with or without the beam-line) and for both ion sources. The temperature difference between the FEA model and the experimental results increases with increasing target currents. As shown in Figure 3, at the target center the FEA model underestimated the temperature by 22–32 % for ion source 1 and 13–22 % for ion source 2. This is consistent with the difference between the two ion sources due to the difference in the ion-to-puller gap size. With the target mounted at the exit port the theoretical and measured temperature for the center of the platinum disk is shown in FIGURE 4. The FEA model underestimates the temperature at the center of the platinum disc by 2–10 % for both ion sources. As shown with the previous experiment, the margin of error increases with increasing target current. Comparison between FIGS. 3 and 4 shows the measured temperature at the center of the platinum disk is significantly lower when the target is attached to exit port of the cyclotron. Localised area of high current density (hot spots) is not registered as higher temperature in the bulk material. True temperature inside the bulk material is highly dependent on the thermal conductivity of the target material and the resolution of the thermocouple. The cross-sectional area of the beam ‘hot-spot’ will be greater due to beam divergence at the end of the beam line compared with the exit port. The ‘hot’ area of the expanded beam becomes a significant portion of the overall collimated beam (collimator dia. 10.0 mm). A more uniform beam profile (less heterogeneity) evenly distributed the area of high current density across the disk surface, effectively increasing the temperature of the bulk material while decreasing the sensitivity required to measure the true temperature. As observed from this comparative study it appears that a more homogeneous current density leads to a higher temperature measurement at the target center. With the solid target at the end of the beam-line, target current lost on the collimator and beam-line was >55%. The effect of beam divergence is clearly observed in TABLE 5. With the target mounted directly at the exit port the current lost was reduced to < 40 %. Although the average proton current density is the same for any set target current, irrespective of target position, the contribution of the peripheral beam to the total target current should not be underestimated. A loss of ~40 μA on the collimator and beam-line places greater reliance on the center of the ‘hot’ beam to maintain the same target current. The temperature at the radial position (FIG. 5) observes the same trend as for the temperature measured in the center. The error increases for higher target currents and the FEA model underestimated the temperature by 19–40 %. The error at this location is due partly to the model’s assumption of a uniform heat source, applied to the material on a single axis (perpendicular to the material surface) and does not account for any scattering or divergence of the incident proton beam. FIGURE 6 shows that the FEA model underestimated the radial temperature by 16–37 %, when the target is connected to the exit port, for reasons discussed previously. Comparison with FIG. 5 (target on the beam-line) shows the same margin of error between the FEA and the experimental results (19–40 %). The temperature difference between the FEA model and measured temperature at the radial position is independent of the beam profile and beam divergence. The FEA model underestimated the temperature at the radial location with or without the beam-line and for both ion sources. The significance difference in temperature between the FEA model and the experimental is due to our model assumption that the maximum radial temperature is on the irradiated surface and not inside the material corresponding to the layer with the maximum energy lost. In addition, the FEA model does not ac-count for the divergence of the proton beam as it travels through the material. Given the temperature at 50 μA target current is > 90 °C (TABLES 3 and 4) we have capped the experi-ment below this point to prevent any damage the o-ring seal. Conclusion The segmented FEA model was inadequate in determining the temperature for the target at the end of a 300mm beam-line (> 30 % difference). A combination of beam divergence and greater uniform coverage of high current density beam resulted in a higher than predicted temperature reading. However, the segmented FEA model provides a good estimation (< 10 % difference) for the observed temperature of the bulk material at the exit port. The simplistic FEA model was unable estimate the temperature at the radial position (~ 40 % difference) regardless of ion source or target position. A comparison between the two ion sources with different ion-to-puller extraction gap, leading to different focusing of the accelerated beam yield minimal temperature difference. Although a 15% difference was observed between the ion sources at the end of the beam-line, a major contributing factor is beam divergence beyond the magnetic field rather than the beam size of the accelerated beam. Further studies are underway to determine the beam profile (quantitatively using radiographic film), quantify the contribution of the peripheral beam to the total beam current by comparing different size collimators and to investigate other FEA models by applying different beam models (heterogeneous and homogeneous beam) and different heat sources (surface vs. volumetric). Currently the RAPID Lab solid targetry is placed at the end of the beam-line for easy loading and unloading, since multiple target irradiations are performed per month2. However, RAPID is presently developing a new solid targetry sys-tem which eliminates the need for a beam-line and will be able to manage a maximum extracted target current of 150 μA

    Quality assurance of 61Cu using ICP mass spectroscopy and metal complexation

    Get PDF
    Introduction 61Cu (T1/2 = 3.33 hr, Eβ= 1.22 MeV, 61.4 %) is an attractive isotope for positron emission tomography (PET) radiopharmaceutical agents such as ATSM and PTSM. Various separation processes have been reported for the production of 61Cu on a medium cyclotron using 13–22 MeV protons on natural and enriched 64Zn target materials [1,2]. This work, investigates production of 61Cu using both natural and enriched 64Zn targets and its separation. Three types of resins were used to assess for their efficiency and speed to separate the desired 61Cu from the 66,67,68Ga and 64Zn and for the recycling of 64Zn target material. The effective specific activity of purified 61Cu, was determined by ICP-MS and its titration with various polyaza and polycarboxylate complexing ligands. Material and Methods 1. Production and Separation Targets were irradiated by proton beam of IBA cyclotron 18/18MeV via the 64Zn(p,α) 61Cu and natZn(p,x) 61Cu reactions using an enriched 64Zn foil(15×15×0.05mm, ~50 mg) and natural foil (diameter 25 mm, 0.05 mm,~ 60 mg). Thirty minute irradiations were conducted with incident proton energies between 11.7–12.0 MeV and beam currents of 20 and 40 µA. Irradiated Zn targets were dissolved in 8M HCl at 150 oC then evaporated to dryness. Trace water to the resultant residue (twice) and resultant solutions evaporated to dryness. The residue was re-dissolved in 2ml of 0.01M HCl before loading onto a Cu-resin column (FIG. 1) Zn and Ga isotopes were collectively eluted using 30 ml of 0.01M HCl. The Cu was then removed using 1.5 ml of 8M HCl and passed directly onto a cation exchange followed by an anion exchange column. An additional 3 ml of 8M HCl was used to rinse the cation exchange column and ensure quantitatively removal of Cu (II) ions. The Cu was finally eluted from the anion exchange column using 3 ml of 2M HCl. The Cu solution was heated up at 150 oC until evaporated to dryness and 61Cu final product dissolved in 400–800 μL of 0.01M HCl. 2. Specific activity of 61Cu The specific activity (GBq/µmol) of the purified 61Cu was determined by ICP-MS and compared with that determined using dota, nota and di-amsar complexing ligands. For each 61Cu production run aliquot of final solution (100 µL) was left to decay before dilut-ing to 10 mL with 10% HNO3. Decayed samples were sent to ChemCentre (Curtin University) for ICP-MS analysis. Each sample was analysed for Cu, Al, Ca, Co, Fe, Ga, Ni, Si, and Zn, which are known to compete with Cu2+ for ligand complexation. Effective specific activity of the 61Cu was deter-mined by titrating various known concentration of ligands with 61Cu solution. The method is detailed in the literature [3]. Briefly, varying concentrations of each ligand was prepared in 0.1M sodium acetate buffer pH 6.5 to a total volume 20 µL. Fixed concentration of diluted 61Cu (0.01M HCl) in 10 µL was added to each ligand solution. The mixtures were vortexed then left to incubate at the room temperature for 30 mins. Two uL aliquots were withdrawn (in triplicate) from each reaction mixture and spot-ted on ITLC –SA. [Mobile phase: 0.1M NaCl: 0.1M EDTA (9:1) for Cu2+ and diamsar mixtures: Rf 0.8 free Cu2+ and 0.1M sodium acetate pH 4.5: H2O: MeOH: ammonium hydroxide (20:18:2:1 v/v) for Cu2+ dota and nota mixtures: Rf >0.8 Cu-dota and Cu-nota Rf < 0.2 free Cu2+]. Complexation of the 61Cu with each ligand was complete within 30 mins at room temperature. Concentration of Cu2+ was deter-mined from the 50% labelling efficiency. Results and Conclusion 1. Production and Separation The radioisotopes production from natZn target must be minimized by the optimum proton energy to reduce a radiation dose in the final product. The excitation functions of 66,67,68Ga ,65Zn and 61Cu are shown in FIG. 2. Proton beam energy of 11.7 MeV was used for both Zn targets to minimise the production of Ga isotopes and prevent formation of 65Zn. For the enriched 64Zn target (99.30%) higher proton energy could be used for the production of 61Cu allowing for increased yields and reduce radio contaminants. Previously, we used anion and cation exchange resin as described in the literature to separate the 61Cu [1]. Unfortunately the literature method was too long (up to 3 hours) and requiring high concentration of HCl and long evaporation times compromising achievable yields [4]. Thieme S. et al., 2013 [2] reported the successful use of Cu-resin for the separation of Cu radioisotopes and it was of interest to the current work to test this material for the separation of 61Cu in our hands. A cation, anion exchange and Cu-resin were combined into closed system to separate the 61Cu within 30 mins (FIG. 1). The system is designed to contain the transfer of solutions be-tween each column using simple plunger to force solution through and between each column. This system afforded an easy, reliable and fast separation of 61Cu that could be completed within 30 min. 2. Specific activity The specific activity of 61Cu was determined using ICP-MS and by titration with three ligands is summarized in TABLE 1. The ICP-MS data show values ranging from 9.2 to 32.4 GBq/μmol for 8 production runs. Specific activity determine using nota and dota were in all cases lower than the ICP MS data indicating some interference from the other metal ion contaminates such as Fe(ii/Iii), Ni (II), Ca (II), Zn (II), Ga (III). The specific activity determine using diamsar, which is known to be highly selective for Cu(II) (and Zn(II) and Fe(III)) in the presence of alkali and alkaline earth ions gave values significantly higher effective specific activity than that obtained using ICP MS. Variations in values can be explained by presence of contaminating metal ions

    Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam

    Get PDF
    After a decade of design and construction, South Africa's SKA-MID precursor MeerKAT has begun its science operations. To make full use of the widefield capability of the array, it is imperative that we have an accurate model of the primary beam of its antennas. We have taken available L-band full-polarization 'astro-holographic' observations of three antennas and a generic electromagnetic simulation and created sparse representations of the beams using principal components and Zernike polynomials. The spectral behaviour of the spatial coefficients has been modelled using discrete cosine transform. We have provided the Zernike-based model over a diameter of 10 deg averaged over the beams of three antennas in an associated software tool (EIDOS) that can be useful in direction-dependent calibration and imaging. The model is more accurate for the diagonal elements of the beam Jones matrix and at lower frequencies. As we get more accurate beam measurements and simulations in the future, especially for the cross-polarization patterns, our pipeline can be used to create more accurate sparse representations of MeerKAT beams.Comment: 16 pages, 18 figures. This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer review. The version of record [K. M. B. Asad et al., 2021] is available online at: https://doi.org/10.1093/mnras/stab10

    Qualitative Assessment of the Pharmacist’s Role in Punjab, Pakistan: Medical Practitioners’ Views

    Get PDF
    Purpose: To assess the perception of Pakistani doctors regarding pharmacist’s role in Punjab Pakistan.Methods: A qualitative approach was used to assess the perception of doctors regarding pharmacist’s role in the study setting. A total of 12 doctors were interviewed using a semi- structured interview guide. The study was conducted for a period of 3 months in the Pakistani cities of Islamabad and Lahore, from July to September 2011. Doctors were informed regarding the aim, objective and nature of the study.Results: All the interviews were transcribed verbatim and thematically analyzed for their content. Thematic content analysis yielded four major themes: 1) Availability of pharmacist in Pakistan’s healthcare setting. 2) Willingness to collaborate with pharmacist. 3) Separation of prescribing from dispensing. 4) Difference in academic levels of doctors and pharmacist.Conclusion: Doctors are receptive to an expanded role for pharmacists, also regard them as drug information experts, but their expectations fall short of the quality of clinically-focused pharmacy services that pharmacists are actually rendering.Keywords: Doctors’ expectation, Pharmacist, Clinical pharmacy services, Qualitative study, Prescribin

    Dynamic Wireless Information and Power Transfer Scheme for Nano-Empowered Vehicular Networks

    Get PDF
    In this paper, we investigate the wireless power transfer and energy-efficiency (EE) optimization problem for nano-centric vehicular networks operating over the terahertz band. The inbody nano-sensors harvest energy from a power station via radio-frequency signal and then use the harvested energy to transmit data to the sink node. By considering the properties of terahertz band (i.e., sensitivity to distance and frequency over the communication path), we adopt the Brownian motion model to develop a time-variant terahertz channel model and to describe the mobility of the nano-sensors. Thus, based on the channel model and energy resources, we further develop a long-term EE optimization problem. The EE optimization is further converted into a series of energy-efficient resource allocation problems over the time slots via equivalent transformation method. The resource allocation problem for each timeslot, which is formulated as a mixed integer nonlinear programming (MINLP), is solved based on the particle swarm optimization (PSO) method. In addition, a dynamic PSO-based EE optimization (DPEEO) algorithm is developed to obtain the sub-optimal solution for the EE optimization problem. By exploiting the special structure of the reformulated problem, an improved DPEEO algorithm, is presented which can handle the problem’s constraints quite well, decreases the research space, and greatly reduces the length of the convergence time. Simulation results validate the theoretical analysis of our system

    Purification and medium optimization of α-amylase from Bacillus subtilis 168

    Get PDF
    α-Amylase was first time isolated and purified from Bacillus subtilis 168 (1A1). Purified α-amylase fraction showed a single protein band with a molecular weight of 55 kD. Chemical characterization of the purified α-amylase revealed optimum amylolytic activity at 37°C and pH 7.0 using starch as substrate. It was stable at pH 5.0 to 9.0 and at temperatures 25–70°C. Culture conditions were optimized by using statistics-based experimental designs to enhanced α-amylase (EC.3.2.1.1) production. A two level fractional factorial Plackett-Burman design was used for the preliminary screening significant media components and conditions. Response surface methodology (RSM) involving a 24 full-factorial central composite design (CCD) and a second-order polynomial equation was then employed to identify the relationship between the α-amylase yield and the four significant variables. Optimal levels of the significant variables for the maximum α-amylase yield were starch 2.55 g/l, yeast extract 8.4 g/l, sodium chloride 8.1% and 48 h of incubation. Mean value of α-amylase yield was 639.7 IU/ml, which was in excellent agreement with the predicted value (633.5 IU/ml).Key words: Bacillus, α-amylase, optimization, Plackett-Burman design, response surface methodology

    Iron Deficiency Anaemia In Reproductive Age Women Attending Obstetrics And Gynecology Outpatient Of University Health Centre In Al-Ahsa, Saudi Arabia

    Get PDF
    Background: Iron deficiency is the most common nutritional disorder in the world. The aim of this questionnaire based survey study was to determine the prevalence of iron deficiency anemia in reproductive age women, and their relation to variables such as age, marital status, education with those attending obstetrics and gynecology outpatient of King Faisal University Health Centre in Al-Ahsa in eastern region of Kingdom of Saudi Arabia.Materials and Methods: This study was conducted for the period of 6 month staring from September 2012 to February 2013. The questionnaire had three sections on personal information: their educational indicators, gynecological clinical history, and hematological indices.Results: The average age was 25.97±7.17 years. According to the  gynecological clinical history of the respondents, 15 (48.4%) respondents were pregnant while 16 (51.6%) were not pregnant. There was significant effect of pregnancy status on Hb level. Majority of the anemic respondents 15/17 were married. Moreover 14/17 anemic women were experiencing severe menstrual bleeding, 11/17 respondents were pregnant. 54.8% of respondents were hemoglobin deficient while 77.4% were found to have low Hct. In 87.1 % of the respondents, transferrin saturation was found to be abnormal.Conclusion: In this study iron deficiency anemia is quite prevalent in the university community especially among pregnant women. The fetus’s and newborn infant’s iron status depends on the iron status of the pregnant woman and therefore, iron deficiency in the mother-to-be means that growing fetus probably will be iron deficient as well. Thus iron deficiency anemia during pregnancy in well-educated set up needs more attention by the concerned authorities.Keywords: Iron deficiency Anemia (IDA), Hemoglobin, Female, Reproductive Age
    • …
    corecore