187 research outputs found

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function

    Structure-Specific Fermentation of Galacto-Oligosaccharides, Isomalto-Oligosaccharides and Isomalto/Malto-Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses

    Get PDF
    SCOPE: Next to galacto-oligosaccharides (GOS), starch-derived isomalto-oligosaccharide preparation (IMO) and isomalto/malto-polysaccharides (IMMP) could potentially be used as prebiotics in infant formulas. However, it remains largely unknown how the specific molecular structures of these non-digestible carbohydrates (NDCs) impact fermentability and immune responses in infants. METHODS AND RESULTS: In vitro fermentation of GOS, IMO and IMMP using infant fecal inoculum of 2- and 8-week-old infants showed that only GOS and IMO were fermented by infant fecal microbiota. The degradation of GOS and IMO coincided with an increase in Bifidobacterium and production of acetate and lactate, which was more pronounced with GOS. Individual isomers with an (1↔1)-linkage or di-substituted reducing terminal glucose residue were more resistant to fermentation. GOS, IMO and IMMP fermentation digesta attenuated cytokine profiles in immature dendritic cells (DCs), but the extent was dependent on the infants age and NDC structure. CONCLUSION: The IMO preparation, containing reducing and non-reducing isomers, showed similar fermentation patterns as GOS in fecal microbiota of 2-week-old infants. Knowledge obtained on the substrate specificities of infant fecal microbiota and the subsequent regulatory effects of GOS, IMO and IMMP on DC responses might contribute to the design of tailored NDC mixtures for infants of different age groups. This article is protected by copyright. All rights reserved

    Marine Carbonyl Sulfide (OCS) and Carbon Disulfide (CS\u3csub\u3e2\u3c/sub\u3e): A Compilation of Measurements in Seawater and the Marine Boundary Layer

    Get PDF
    Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have attracted increased interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished (mainly shipborne) measurements in seawater and the marine boundary layer for both gases, available at https://doi.org/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e., cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR

    Get PDF
    Carbonyl sulfide (OCS), the most abundant sulfur gas in the Earth's atmosphere, is a greenhouse gas, a precursor to stratospheric sulfate aerosol, and a proxy for terrestrial CO2 uptake. Estimates of important OCS sources and sinks still have significant uncertainties and the global budget is not considered closed. One particularly uncertain source term, the OCS production during the atmospheric oxidation of dimethyl sulfide (DMS) emitted by the oceans, is addressed by a series of experiments in the atmospheric simulation chamber SAPHIR in conditions comparable to the remote marine atmosphere. DMS oxidation was initiated with OH and/or Cl radicals and DMS, OCS, and several oxidation products and intermediates were measured, including hydroperoxymethyl thioformate (HPMTF), which was recently found to play a key role in DMS oxidation in the marine atmosphere. One important finding is that the onset of HPMTF and OCS formation occurred faster than expected from the current chemical mechanisms. In agreement with other recent studies, OCS yields between 9 % and 12 % were observed in our experiments. Such yields are substantially higher than the 0.7 % yield measured in laboratory experiments in the 1990s, which is generally used to estimate the indirect OCS source from DMS in global budget estimates. However, we do not expect the higher yields found in our experiments to directly translate into a substantially higher OCS source from DMS oxidation in the real atmosphere, where conditions are highly variable, and, as pointed out in recent work, heterogeneous HPMTF loss is expected to effectively limit OCS production via this pathway. Together with other experimental studies, our results will be helpful to further elucidate the DMS oxidation chemical mechanism and in particular the paths leading to OCS formation.</p

    An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap

    Get PDF
    A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished

    Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage

    Get PDF
    Due to its remote location and extreme weather conditions, atmospheric in situ measurements are rare in the Southern Ocean. As a result, aerosol–cloud interactions in this region are poorly understood and remain a major source of uncertainty in climate models. This, in turn, contributes substantially to persistent biases in climate model simulations such as the well-known positive shortwave radiation bias at the surface, as well as biases in numerical weather prediction models and reanalyses. It has been shown in previous studies that in situ and ground-based remote sensing measurements across the Southern Ocean are critical for complementing satellite data sets due to the importance of boundary layer and low-level cloud processes. These processes are poorly sampled by satellite-based measurements and are often obscured by multiple overlying cloud layers. Satellite measurements also do not constrain the aerosol–cloud processes very well with imprecise estimation of cloud condensation nuclei. In this work, we present a comprehensive set of ship-based aerosol and meteorological observations collected on the 6-week Southern Ocean Ross Sea Marine Ecosystem and Environment voyage (TAN1802) voyage of RV Tangaroa across the Southern Ocean, from Wellington, New Zealand, to the Ross Sea, Antarctica. The voyage was carried out from 8 February to 21 March 2018. Many distinct, but contemporaneous, data sets were collected throughout the voyage. The compiled data sets include measurements from a range of instruments, such as (i) meteorological conditions at the sea surface and profile measurements; (ii) the size and concentration of particles; (iii) trace gases dissolved in the ocean surface such as dimethyl sulfide and carbonyl sulfide; (iv) and remotely sensed observations of low clouds. Here, we describe the voyage, the instruments, and data processing, and provide a brief overview of some of the data products available. We encourage the scientific community to use these measurements for further analysis and model evaluation studies, in particular, for studies of Southern Ocean clouds, aerosol, and their interaction. The data sets presented in this study are publicly available at https://doi.org/10.5281/zenodo.4060237 (Kremser et al., 2020)
    corecore