1,714 research outputs found

    Polynomial conjunctive query rewriting under unary inclusion dependencies

    Get PDF
    Ontology-based data access (OBDA) is widely accepted as an important ingredient of the new generation of information systems. In the OBDA paradigm, potentially incomplete relational data is enriched by means of ontologies, representing intensional knowledge of the application domain. We consider the problem of conjunctive query answering in OBDA. Certain ontology languages have been identified as FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means that the ontology can be incorporated into the user's query, thus reducing OBDA to standard relational query evaluation. However, all known query rewriting techniques produce queries that are exponentially large in the size of the user's query, which can be a serious issue for standard relational database engines. In this paper, we present a polynomial query rewriting for conjunctive queries under unary inclusion dependencies. On the other hand, we show that binary inclusion dependencies do not admit polynomial query rewriting algorithms

    Complex Physics in Cluster Cores: Showstopper for the Use of Clusters for Cosmology?

    Get PDF
    The influence of cool galaxy cluster cores on the X-ray luminosity--gravitational mass relation is studied with Chandra observations of 64 clusters in the HIFLUGCS sample. As preliminary results we find (i) a significant offset of cool core (CC) clusters to the high luminosity (or low mass) side compared to non-cool core (NCC) clusters, (ii) a smaller scatter of CC clusters compared to NCC clusters, (iii) a decreasing fraction of CC clusters with increasing cluster mass, (iv) a reduced scatter in the luminosity--mass relation for the entire sample if the luminosity is scaled properly with the central entropy. The implications of these results on the intrinsic scatter are discussed.Comment: 6 pages; to appear in the proceedings of the conference Heating vs. Cooling in Galaxies and Clusters of Galaxies, edited by H. Boehringer, P. Schuecker, G.W. Pratt, and A. Finoguenov. Dedicated to the memory of Peter Schuecke

    The impact of subsidies on the ecological sustainability and future profits from North Sea fisheries

    Get PDF
    Background: This study examines the impact of subsidies on the profitability and ecological stability of the North Sea fisheries over the past 20 years. It shows the negative impact that subsidies can have on both the biomass of important fish species and the possible profit from fisheries. The study includes subsidies in an ecosystem model of the North Sea and examines the possible effects of eliminating fishery subsidies.Methodology/Principal Findings: Hindcast analysis between 1991 and 2003 indicates that subsidies reduced the profitability of the fishery even though gross revenue might have been high for specific fisheries sectors. Simulations seeking to maximise the total revenue between 2004 and 2010 suggest that this can be achieved by increasing the effort of Nephrops trawlers, beam trawlers, and the pelagic trawl-and-seine fleet, while reducing the effort of demersal trawlers. Simulations show that ecological stability can be realised by reducing the effort of the beam trawlers, Nephrops trawlers, pelagic- and demersal trawl-and-seine fleets. This analysis also shows that when subsidies are included, effort will always be higher for all fleets, because it effectively reduces the cost of fishing.Conclusions/Significance: The study found that while removing subsidies might reduce the total catch and revenue, it increases the overall profitability of the fishery and the total biomass of commercially important species. For example, cod, haddock, herring and plaice biomass increased over the simulation when optimising for profit, and when optimising for ecological stability, the biomass for cod, plaice and sole also increased. When subsidies are eliminated, the study shows that rather than forcing those involved in the fishery into the red, fisheries become more profitable, despite a decrease in total revenue due to a loss of subsidies from the government

    Limitations of model fitting methods for lensing shear estimation

    Full text link
    Gravitational lensing shear has the potential to be the most powerful tool for constraining the nature of dark energy. However, accurate measurement of galaxy shear is crucial and has been shown to be non-trivial by the Shear TEsting Programme. Here we demonstrate a fundamental limit to the accuracy achievable by model-fitting techniques, if oversimplistic models are used. We show that even if galaxies have elliptical isophotes, model-fitting methods which assume elliptical isophotes can have significant biases if they use the wrong profile. We use noise-free simulations to show that on allowing sufficient flexibility in the profile the biases can be made negligible. This is no longer the case if elliptical isophote models are used to fit galaxies made up of a bulge plus a disk, if these two components have different ellipticities. The limiting accuracy is dependent on the galaxy shape but we find the most significant biases for simple spiral-like galaxies. The implications for a given cosmic shear survey will depend on the actual distribution of galaxy morphologies in the universe, taking into account the survey selection function and the point spread function. However our results suggest that the impact on cosmic shear results from current and near future surveys may be negligible. Meanwhile, these results should encourage the development of existing approaches which are less sensitive to morphology, as well as methods which use priors on galaxy shapes learnt from deep surveys.Comment: 10 pages, 8 figure

    A bias in cosmic shear from galaxy selection: results from ray-tracing simulations

    Full text link
    We identify and study a previously unknown systematic effect on cosmic shear measurements, caused by the selection of galaxies used for shape measurement, in particular the rejection of close (blended) galaxy pairs. We use ray-tracing simulations based on the Millennium Simulation and a semi-analytical model of galaxy formation to create realistic galaxy catalogues. From these, we quantify the bias in the shear correlation functions by comparing measurements made from galaxy catalogues with and without removal of close pairs. A likelihood analysis is used to quantify the resulting shift in estimates of cosmological parameters. The filtering of objects with close neighbours (a) changes the redshift distribution of the galaxies used for correlation function measurements, and (b) correlates the number density of sources in the background with the density field in the foreground. This leads to a scale-dependent bias of the correlation function of several percent, translating into biases of cosmological parameters of similar amplitude. This makes this new systematic effect potentially harmful for upcoming and planned cosmic shear surveys. As a remedy, we propose and test a weighting scheme that can significantly reduce the bias.Comment: 9 pages, 9 figures, version accepted for publication in Astronomy & Astrophysic

    PSF calibration requirements for dark energy from cosmic shear

    Full text link
    The control of systematic effects when measuring galaxy shapes is one of the main challenges for cosmic shear analyses. In this context, we study the fundamental limitations on shear accuracy due to the measurement of the Point Spread Function (PSF) from the finite number of stars. In order to do that, we translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. We first derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution). Then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of an elliptical gaussian PSF. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. In the case of an elliptical gaussian PSF and in the absence of dithering, 2 pixels per PSF Full Width at Half Maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars.Comment: 13 pages, 4 figures, accepted by A&

    Prednisone and azathioprine in patients with inflammatory cardiomyopathy: systematic review and meta-analysis

    Get PDF
    Aims: Chronic non-viral myocarditis, also called inflammatory cardiomyopathy, can be treated with immune suppression on tops of optimal medical therapy (OMT) for heart failure, using a combination of prednisolone and azathioprine (IPA). However, there has been inconsistency in the effects of immunosuppression treatment. This meta-analysis is the first to evaluate all available data of the effect of this treatment on left ventricular ejection fraction (LVEF) and the combined clinical endpoint of cardiovascular mortality and/or heart transplantation-free survival. Methods and results: All trials with using IPA vs. OMT in this syndrome were searched using OVID Medline and ClinicalTrials. gov, following the PRISMA guidelines. Missing data were retrieved after contacting the corresponding authors. All data was reviewed and analysed using and standard meta-analysis methods. A random effect model was used to pool the effect sizes. A total of four trials (three randomised controlled trials and one propensity-matched retrospective registry) including 369 patients were identified. IPA on top of OMT did not improve LVEF [mean difference 9.9% (95% confidence interval -1.8, 21.7)] with significant heterogeneity. When we limited our pooled estimate to the published studies only, significant LVEF improvement by IPA was observed [14% (1.4, 26.6)]. No cardiovascular mortality benefit was observed with the intervention [risk ratio 0.34 (0.08, 1.51)]. Conclusions: At the moment, there is insufficient evidence supporting functional and prognostic benefits of IPA added to OMT in virus negative inflammatory positive cardiomyopathy. Further adequate-powered well-designed prospective RCTs should be warranted to explore the potential effects of adding immunosuppressive therapy to OMT

    Cosmic shear requirements on the wavelength-dependence of telescope point spread functions

    Get PDF
    Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational Point Spread Function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent, therefore the differences between the spectral energy distribution of the observed objects introduces further complexity. In this paper we investigate the effect of the wavelength-dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction-limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF we find that the colour-dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per-cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.Comment: 10 pages, 8 figures, version accepted for publication in MNRA

    Cosmological weak lensing with the HST GEMS survey

    Full text link
    We present our cosmic shear analysis of GEMS, one of the largest wide-field surveys ever undertaken by the Hubble Space Telescope. Imaged with the Advanced Camera for Surveys (ACS), GEMS spans 795 square arcmin in the Chandra Deep Field South. We detect weak lensing by large-scale structure in high resolution F606W GEMS data from ~60 resolved galaxies per square arcminute. We measure the two-point shear correlation function, the top-hat shear variance and the shear power spectrum, performing an E/B mode decomposition for each statistic. We show that we are not limited by systematic errors and use our results to place joint constraints on the matter density parameter Omega_m and the amplitude of the matter power spectrum sigma_8. We find sigma_8(Omega_m/0.3)^{0.65}=0.68 +/- 0.13 where the 1sigma error includes both our uncertainty on the median redshift of the survey and sampling variance. Removing image and point spread function (PSF) distortions are crucial to all weak lensing analyses. We therefore include a thorough discussion on the degree of ACS PSF distortion and anisotropy which we characterise directly from GEMS data. Consecutively imaged over 20 days, GEMS data also allows us to investigate PSF instability over time. We find that, even in the relatively short GEMS observing period, the ACS PSF ellipticity varies at the level of a few percent which we account for with a semi-time dependent PSF model. Our correction for the temporal and spatial variability of the PSF is shown to be successful through a series of diagnostic tests.Comment: 17 pages, 16 figures. Version accepted by MNRA
    corecore