1,408 research outputs found
Criticality in the configuration-mixed interacting boson model : (1) mixing
The case of U(5)-- mixing in the
configuration-mixed Interacting Boson Model is studied in its mean-field
approximation. Phase diagrams with analytical and numerical solutions are
constructed and discussed. Indications for first-order and second-order shape
phase transitions can be obtained from binding energies and from critical
exponents, respectively
A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes
Very recently the atomic masses of neutron-rich Zr isotopes, from Zr
to Zr, have been measured with high precision. Using a schematic
Interacting Boson Model (IBM) Hamiltonian, the evolution from spherical to
deformed shapes along the chain of Zr isotopes, describing at the same time the
excitation energies as well as the two-neutron separation energies, can be
rather well reproduced. The interplay between phase transitions and
configuration mixing of intruder excitations in this mass region is succinctly
addressed.Comment: Accepted in European Journal of Physics
The quadrupole collective model from a Cartan-Weyl perspective
The matrix elements of the quadrupole variables and canonic conjugate
momenta, emerging from collective nuclear models are calculated within a
basis. Using a harmonic oscillator implementation of the
SU(1,1) degree of freedom, it can be shown that the matrix elements of the
quadrupole phonon creation and annihilation operators can be calculated in a
pure algebraic way, making use of an intermediate state method.Comment: Special issue of journal of physics for the QTS5 conferenc
Spectral properties of a tractable collective Hamiltonian
The spectral properties of a tractable collective model Hamiltonian are
studied. The potential energy is truncated up to quartic terms in the
quadrupole deformation variables, incorporating vibrational,
-independent rotational and axially deformed rotational structures.
These physically significant limits are analysed in detail and confronted with
well-established approximation schemes. Furthermore, transitional Hamiltonians
in between the limits are presented and discussed. All results are obtained
within a recently presented Cartan-Weyl based framework to calculate
embedded quadrupole collective observables.Comment: submitted to PR
Quadrupole collective variables in the natural Cartan-Weyl basis
The matrix elements of the quadrupole collective variables, emerging from
collective nuclear models, are calculated in the natural Cartan-Weyl basis of
O(5) which is a subgroup of a covering structure. Making
use of an intermediate set method, explicit expressions of the matrix elements
are obtained in a pure algebraic way, fixing the -rotational structure
of collective quadrupole models.Comment: submitted to Journal of Physics
Configuration mixing in Pb : band structure and electromagnetic properties
In the present paper, we carry out a detailed analysis of the presence and
mixing of various families of collective bands in Pb. Making use of the
interacting boson model, we construct a particular intermediate basis that can
be associated with the unperturbed bands used in more phenomenological studies.
We use the E2 decay to construct a set of collective bands and discuss in
detail the B(E2)-values. We also perform an analysis of these theoretical
results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated
quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
Knowledge True and Useful: A Cultural History of Early Scholasticism. By Frank Rexroth, translated by John Burden, Middle Ages Series (Philadelphia: University of Pennsylvania Press, 2023)
- …
