81 research outputs found

    Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems

    Get PDF
    The instantaneous efficiency of an operating photoelectrochemical solar-fuel-generator system is a complicated function of the tradeoffs between the light intensity and temperature-dependence of the photovoltage and photocurrent, as well as the losses associated with factors that include ohmic resistances, concentration overpotentials, kinetic overpotentials, and mass transport. These tradeoffs were evaluated quantitatively using an advanced photoelectrochemical device model comprised of an analytical device physics model for the semiconducting light absorbers in combination with a multi-physics device model that solved for the governing conservation equations in the various other parts of the system. The model was used to evaluate the variation in system efficiency due to hourly and seasonal variations in solar irradiation as well as due to variation in the isothermal system temperature. The system performance characteristics were also evaluated as a function of the band gaps of the dual-absorber tandem component and its properties, as well as the device dimensions and the electrolyte conductivity. The modeling indicated that the system efficiency varied significantly during the day and over a year, exhibiting local minima at midday and a global minimum at midyear when the solar irradiation is most intense. These variations can be reduced by a favorable choice of the system dimensions, by a reduction in the electrolyte ohmic resistances, and/or by utilization of very active electrocatalysts for the fuel-producing reactions. An increase in the system temperature decreased the annual average efficiency and led to less rapid ramp-up and ramp-down phases of the system, but reduced midday and midyear instantaneous efficiency variations. Careful choice of the system dimensions resulted in minimal change in the system efficiency in response to degradation in the quality of the light absorbing materials. The daily and annually averaged mass of hydrogen production for the optimized integrated system compared favorably to the daily and annually averaged mass of hydrogen that was produced by an optimized stand-alone tandem photovoltaic array connected electrically to a stand-alone electrolyzer system. The model can be used to predict the performance of the system, to optimize the design of solar-driven water splitting devices, and to guide the development of components of the devices as well as of the system as a whole

    Mitigating voltage losses in photoelectrochemical cell scale up

    Get PDF
    In solar water splitting, efforts in scaling up the photoelectrochemical cell beyond laboratory scale have started to attract significant attention. Several large area devices have been demonstrated, but typically the efficiencies are much lower than their small area equivalent. Here, two dimensional finite element modeling is used to evaluate the different sources of voltage loss specifically related to scale up in solar water splitting devices operated in neutral pH solutions. We quantitatively investigate the influence of the electrode area to these scale up associated losses substrate ohmic loss, electrolyte ohmic loss, and local pH gradient related losses . About 600 mV additional overpotential is needed due to these losses for a cell with electrodes of height of 8 cm at a current density of 10 mA cm amp; 8722;2. We show, however, that by applying engineering and cell design strategies, the voltage losses can be mitigated, resulting in an acceptable amp; 8764;50 mV overpotential. Overall, this study highlights the additional challenges to be considered in photoelectrochemical cell scale up and provides strategies to manage and mitigate scaling related losse

    Phase Change Material Systems for High Temperature Heat Storage

    Get PDF
    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance

    Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems

    Get PDF
    A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The modeling has led to the formulation of design guidelines at the system and component levels, and has identified quantifiable gaps that warrant further research effort at the component level. The two characteristic generic types of photoelectrochemical systems that were analyzed utilized: (i) side-by-side photoelectrodes and (ii) back-to-back photoelectrodes. In these designs, small electrode dimensions (mm to cm range) and large electrolyte heights were required to produce small overall resistive losses in the system. Additionally, thick, non-permeable separators were required to achieve acceptably low rates of product crossover

    Continuum radiative heat transfer modeling in media consisting of optically distinct components in the limit of geometrical optics

    Get PDF
    Continuum-scale equations of radiative transfer and corresponding boundary conditions are derived for a general case of a multi-component medium consisting of arbitrary-type, non-isothermal and non-uniform components in the limit of geometrical optics. The link between the discrete and continuum scales is established by volume averaging of the discrete-scale equations of radiative transfer by applying the spatial averaging theorem. Precise definitions of the continuum-scale radiative properties are formulated while accounting for the radiative interactions between the components at their interfaces. Possible applications and simplifications of the presented general equations are discussed
    • …
    corecore