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a b s t r a c t

The spatial averaging theorem is applied to rigorously derive continuum-scale equations

of radiative transfer in two-phase media consisting of arbitrary-type phases in the limit

of geometrical optics. The derivations are based on the equations of radiative transfer

and the corresponding boundary conditions applied at the discrete-scale to each phase,

and on the discrete-scale radiative properties of each phase and the interface between

the phases. The derivations confirm that radiative transfer in two-phase media

consisting of arbitrary-type phases in the range of geometrical optics can be modeled

by a set of two continuum-scale equations of radiative transfer describing the variation

of the average intensities associated with each phase. Finally, a Monte Carlo based

methodology for the determination of average radiative properties is discussed in the

light of previous pertinent studies.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative heat transfer in multi-phase media is
commonly encountered in chemical processing, combus-
tion, nuclear and civil engineering, atmospheric sciences,
and solar technology. Of particular interest are stochastic
two-phase media to which laws of geometrical optics are
applicable [1]. They find applications as reacting packed
beds, porous heat exchangers, radiant absorbers and
burners, and insulations. Radiative heat transfer in such
media can often be predicted based on the phenomen-
ological theory of radiative energy transfer with the
knowledge of appropriate radiative properties [2–6].
Examples of previous pertinent studies include the
determination of radiative properties of porous two-phase
media consisting of an optically-thin phase and an opaque
phase [7–9] and of an optically-thin and a semi-transpar-
ent phase [10–14]. Equations of radiative transfer (RTEs)
were derived from an RTE applied at the discrete scale in a
ll rights reserved.

+1612 626 1854.
multi-phase porous medium having an optically-thin
phase and an opaque phase consisting of large opaque
particles [15], formulated for a medium having an
optically-thin phase and a semi-transparent phase [10],
derived for heterogeneous two-phase media with irregu-
lar phase boundaries [16], and derived directly from
statistical electromagnetics for a medium containing
arbitrarily shaped and oriented particles in an optically-
thin host medium [17]. In [8,10,14] the radiative char-
acteristics were determined based on the exact morphol-
ogy of the porous media, obtained from computer
tomography. In the studies dealing with porous media in
the range of geometrical optics, either the continuum-
scale RTEs were derived for specific cases or the physical
meaning of the radiative intensity appearing in these
equations was not clearly explained, making the physical
interpretation of the continuum-scale radiative properties
difficult.1
1 Variables and properties associated with the length scale of single

porous structures (particles, pores, struts, etc.) are referred to as

discrete-scale. Variables and properties associated with the length scale
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Nomenclature

A surface area, m2

fV volume fraction
I average intensity, W m�3 sr�1

L discrete-scale intensity, W m�3 sr�1

n refractive index
n̂ normal unit vector
r global position vector, m
s thickness, m
ŝ direction unit vector
T temperature, K
V averaging volume, m3

x global position vector of the center of an
averaging volume, m

Greek symbols

e emissivity
k absorption coefficient, m�1

r reflectivity
s Stefan-Boltzman constant, W m�2 K�4

ss scattering coefficient, m�1

t transmissivity
F phase function

c scalar quantity
c0 difference between a scalar c and its super-

ficial volume average
c0ij

i difference between a scalar c and its intrinsic
volume average

O solid angle, sr

Subscripts

b blackbody
c collision
d discrete-scale
i, j phase indices
in incoming
int interface
k ray index
r reflection
w boundary of the two-phase medium

Superscripts

‘‘ bi-directional
‘ Þ directional-hemispherical
i, j indices of the averaging phases

phase j

phase i

Aint
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In this note, the spatial averaging theorem (SAT),
derived from the Gauss–Ostrogradsky theorem and pre-
viously applied to mass transfer as well as conduction and
convection heat transfer in porous media, is applied to the
radiative heat transfer in a two-phase medium consisting
of either two semi-transparent or one semi-transparent
and one opaque homogeneous phases in the limit of
geometrical optics [18–20]. RTEs and the corresponding
boundary conditions are rigorously derived for volume-
averaged radiative intensities by utilizing RTEs and the
corresponding boundary conditions applied at the discrete
scale to each phase, and the discrete-scale radiative
properties of each phase. Unambiguous definitions of
the continuum-scale radiative properties are postulated
when deriving the continuum-scale RTEs. A Monte Carlo
(MC) based methodology for the determination of con-
tinuum-scale radiative properties is discussed in the light
of the studies presented in [7,8,10,14].

2. Basic definitions

Consider a two-phase medium shown in Fig. 1. An
averaging volume V is enclosed by the dashed line. Phases
i and j are characterized by their partial volumes Vi and Vj

within V, and the corresponding volume fractions f V ;i and
f V ;j, respectively. In the following text, all equations
written for phase i apply analogously to phase j unless
stated otherwise. A given discrete-scale scalar quantity ci
(footnote continued)

of a sufficiently-large volume of the two-phase medium that can be

treated as a continuum, are referred to as continuum-scale.
associated with phase i can be expressed as

ci ¼ hcii þc0i, (1)

ci ¼ hcii
i þ c0ij

i, (2)

where the superficial and the intrinsic averages, hcii and
hcii

i respectively, are calculated as

hcii ¼
1

V

Z
V
ci dV ; V ¼

X
i

V i, (3)

hcii
i ¼

1

Vi

Z
Vi

ci dV ; Vi ¼ f V ;iV . (4)
r x

Fig. 1. Averaging volume for the medium consisting of phases i and j.
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dAint

ŝin

n̂j

ŝ

n̂i

phase jphase i

dAint

ŝ

phase i

n̂j

n̂i

ŝin

phase j

Fig. 2. Interface phenomena in a medium consisting of two semi-

transparent phases: (a) reflection and (b) transmission.

W. Lipiński et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 253–258 255
A scalar quantity associated with a particular phase is
required to vanish outside this phase. Thus,

hcii ¼ f V ;ihcii
i. (5)

The volume average of the discrete-scale gradient of ci is
related to the continuum-scale gradient of hcii as given by
the spatial averaging theorem (SAT) [18–20],

hrrcii ¼ rxhcii þ
1

V

Z
Aint

cin̂i dAint, (6)

where r and x are a global position vector of a given point
within Vi and a global position vector of the center of the
averaging volume V, respectively [18]. Aint ¼ dVi ¼ dVj and
n̂i are the surface area of the i�j interface contained
within V and the unit normal vector at the interface
pointing out of phase i, respectively. V is assumed to be
(i) large enough to include all typical morphological
structures of the real medium and (ii) small enough as
compared to the overall size of the two-phase medium.

In this paper, the discrete-scale, superficial average and
intrinsic average intensities associated with phase i are
denoted by Liðr; ŝÞ, Iiðx; ŝÞ, and Ii

iðx; ŝÞ, respectively.
3. Derivation of continuum-scale RTEs

The subsequent derivations are subject to the following
assumptions: (i) the two-phase medium is isotropic at the
continuum scale, (ii) both phases are internally homo-
geneous and their discrete-scale spectral radiative proper-
ties are independent of position, (iii) the refractive index is
constant in each phase, (iv) each phase is isothermal in
the averaging volume V, (v) each phase is at rest as
compared to the speed of light, (vi) each phase is non-
polarizing and the state of polarization can be neglected,
(vii) the local thermodynamic equilibrium is valid in each
phase, (viii) geometrical optics is valid in each phase, (ix)
diffraction is negligible, and (x) radiative transfer in each
phase is quasi-steady.
3.1. Medium consisting of two semi-transparent phases

In a medium consisting of the two semi-transparent
phases, the radiative intensities exist in each phase. The
discrete-scale intensity variations are governed by dis-
crete-scale RTEs applied to each phase. For phase i, the
discrete-scale RTE reads [2–4]:

ŝ � rrLiðr; ŝÞ ¼ � ½kd;i þ ss;d;i�Liðr; ŝÞ þ n2
i kd;iLb;iðrÞ

þ
ss;d;i

4p

Z
4p

Liðr; ŝinÞFd;iðŝin; ŝÞdOin; (7)

where the spectral subscript has been omitted for brevity.
The corresponding boundary condition at Aint : ŝ � n̂io0
reads [2–4] (see Fig. 2)

Liðrint; ŝÞ ¼
Z
Oin :ŝin �n̂i40

r00ijðŝin; ŝÞLiðrint; ŝinÞŝin � n̂i dOin

�

Z
Oin :ŝin �n̂io0

t00jiðŝin; ŝÞLjðrint; ŝinÞŝin � n̂i dOin; (8a)
where

�

Z
O:ŝ�n̂io0

r00ijðŝin; ŝÞŝ � n̂i dOþ
Z
O:ŝ�n̂i40

t00ijðŝin; ŝÞŝ � n̂i dO

¼ r0_ij ðŝinÞ þ t0_ij ðŝinÞ ¼ 1. (8b)

Analogous equations are obtained for phase j by inter-
changing the subscripts i and j. Eq. (7) is volume-averaged
by applying Eq. (3) to each term. Thus, for constant
discrete-scale radiative properties

hŝ � rrLiðr; ŝÞi ¼ � ½kd;i þ ss;d;i�Iiðx; ŝÞ þ n2
i kd;iIb;iðxÞ

þ
ss;d;i

4p

Z
4p

Liðr; ŝinÞFd;iðŝin; ŝÞdOin

� �
. (9)

The first term on the LHS of Eq. (9) is developed by
applying SAT. The order of integration with respect to Oin

and V in the incoming scattering term, the third term on
the RHS of Eq. (9), can be changed because Oin and V are
independent variables. Since ŝ is only a parameter, it
follows that

ŝ � rxIiðx; ŝÞ ¼ � ½kd;i þ ss;d;i�Iiðx; ŝÞ þ n2
i kd;iIb;iðxÞ

þ
ss;d;i

4p

Z
4p

Iiðx; ŝinÞFd;iðŝin; ŝÞdOin

�
1

V

Z
Aint

Liðrint; ŝÞŝ � n̂i dAint. (10)

The last term on the RHS of Eq. (10) gives the net radiative
heat transfer rate per unit volume and solid angle around
the direction ŝ resulting from the radiative intensities
entering and leaving phase i at Aint : ŝ � n̂io0 and
Aint : ŝ � n̂i40, respectively. The surface integral in
Eq. (10) is developed by using the boundary condition,
Eq. (8a),Z

Aint

Liðrint; ŝÞŝ � n̂i dAint

¼

Z
Aint :ŝ�n̂io0

Z
Oin :ŝin�n̂i40

r00ijðŝin; ŝÞLiðrint; ŝinÞŝin � n̂i dOinŝ � n̂i dAint

�

Z
Aint :ŝ�n̂io0

Z
Oin :ŝin �n̂io0

t00jiðŝin; ŝÞLjðrint; ŝinÞŝin � n̂i dOinŝ � n̂i dAint

þ

Z
Aint :ŝ�n̂i40

Liðrint; ŝÞŝ � n̂i dAint. (11)

The first two terms on the RHS of Eq. (11) give the
augmentation (with negative sign) of radiative heat
transfer rate per unit solid angle around direction ŝ in
phase i resulting from intensities reflected from phase i to
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i and transmitted from phase j to i, respectively. The third
term on the RHS of Eq. (11) gives the attenuation (with the
negative sign) of radiative heat transfer rate per unit solid
angle around direction ŝ. This term is further developed by
using Eq. (8b). The following continuum-scale scattering
coefficients and scattering phase functions associated
with the superficial average intensity Iiðx; ŝinÞ are postu-
lated:

ss;int;ii �

R
Aint :ŝ�n̂i40 r

0_
ij ðŝÞLiðrint; ŝÞŝ � n̂i dAint

Iiðx; ŝÞV
, (12)

ss;int;ij �

R
Aint :ŝ�n̂i40 t

0_
ij ðŝÞLiðrint; ŝÞŝ � n̂i dAint

Iiðx; ŝÞV
, (13)

Fint;iiðŝin; ŝÞ �

R
Aint :ŝ�n̂io0 r

00
ijðŝin; ŝÞLiðrint; ŝinÞŝin � n̂iŝ � n̂i dAint

ð�4pÞ�1ss;int;iiIiðx; ŝinÞV
;

ŝin � n̂i40, (14)

Fint;jiðŝin; ŝÞ �

R
Aint :ŝ�n̂io0 t

00
jiðŝin; ŝÞLjðrint; ŝinÞŝin � n̂i ŝ � n̂i dAint

ð4pÞ�1ss;int;jiIjðx; ŝinÞV
;

ŝin � n̂io0. (15)

Eq. (10) is rewritten by using Eqs. (11)–(15) as

ŝ � rxIiðx; ŝÞ ¼ � ½kd;i þ ss;d;i þ ss;int;ii þ ss;int;ij�Iiðx; ŝÞ þ n2
i kd;iIb;iðxÞ

þ
1

4p

Z
4p

Iiðx; ŝinÞ½ss;d;iFd;iðŝin; ŝÞ

þ ss;int;iiFint;iiðŝin; ŝÞ�dOin

þ
ss;int;ji

4p

Z
4p

Ijðx; ŝinÞFint;jiðŝin; ŝÞdOin. (16)

Then, defining

ki � kd;i; ss;ii � ss;d;i þ ss;int;ii; ss;ij � ss;int;ij,

ss;i � ss;ii þ ss;ij; bi ¼ ki þ ss;i, (17a)

Fiiðŝin; ŝÞ �
ss;d;iFd;iðŝin; ŝÞ þ ss;int;iiFint;iiðŝin; ŝÞ

ss;ii
,

Fjiðŝin; ŝÞ � Fint;jiðŝin; ŝÞ, (17b)

and introducing the intrinsic intensity by virtue of Eq. (5),
it follows from Eq. (16)

f V ;iŝ � rxIi
iðx; ŝÞ ¼ � f V ;ibiI

i
iðx; ŝÞ þ f V ;in

2
i kiI

i
b;iðxÞ

þ f V ;i

ss;ii

4p

Z
4p

Ii
iðx; ŝinÞFiiðŝin; ŝÞdOin

þ f V ;j

ss;ji

4p

Z
4p

Ij
jðx; ŝinÞFjiðŝin; ŝÞdOin. (18)

Eq. (18) is identical with Eq. (1) in [10], given without any
derivation, and is consistent with Eqs. (8) and (9) in [16].
The boundary condition for Eq. (18), formulated at
Aw : ŝ � n̂io0, reads:
�
 for a semi-transparent boundary

Ii
ðxw; ŝÞ ¼

Z
Oin :ŝin�n̂i40

r00i;wðŝin; ŝÞI
i
ðxw; ŝinÞŝin � n̂i dOin

� f V ;i

Z
Oin:ŝin�n̂io0

t00w;iðŝin; ŝÞIwðxw; ŝinÞŝin � n̂i dOin;

(19a)
�
 for an opaque boundary

Ii
ðxw; ŝÞ ¼

Z
Oin :ŝin �n̂i40

r00i;wðŝin; ŝÞI
i
ðxw; ŝinÞŝin � n̂i dOin

þ f V ;in
2
i �
0
w;iðŝÞIb;wðxwÞ. (19b)
3.2. Medium consisting of one semi-transparent phase and

one opaque phase

For a semi-transparent phase i and an opaque phase j,
the discrete-scale radiative intensity exists only within
phase i, and the RTE is written only for this phase,

ŝ � rrLiðr; ŝÞ ¼ � ½kd;i þ ss;d;i�Liðr; ŝÞ þ n2
i kd;iLb;iðrÞ

þ
ss;d;i

4p

Z
4p

Liðr; ŝinÞFd;iðŝin; ŝÞdOin. (20)

The corresponding boundary condition at Aint : ŝ � n̂io0
reads:

Liðrint; ŝÞ ¼

Z
Oin :ŝin�n̂i40

r00ijðŝin; ŝÞLiðrint; ŝinÞŝin � n̂i dOin

þ n2
i �
0
jiðŝÞLb;jðrintÞ. (21)

Performing the volume-averaging on Eq. (20) and subse-
quently applying SAT, one obtains an equation identical to
Eq. (10), to which the boundary condition (21) is then
applied. Consequently, the following continuum-scale
scattering and absorption coefficients and the scattering
phase function associated with the superficial average
intensities are postulated:

ss;int �

R
Aint :ŝ�n̂i40 r

0_
ij ðŝÞLiðrint; ŝÞŝ � n̂i dAint

Iiðx; ŝÞV
; (22)

kint �

R
Aint :ŝ�n̂i40 a

0
ijðŝÞLiðrint; ŝÞŝ � n̂i dAint

Iiðx; ŝÞV
; (23)

kint � �

R
Aint :ŝ�n̂io0 �

0
jiðŝÞLb;jðrintÞŝ � n̂i dAint

Ib;jðxÞV
; (24)

Fintðŝin; ŝÞ �

R
Aint :ŝ�n̂io0 r

00
ijðŝin; ŝÞLiðrint; ŝinÞŝin � n̂iŝ � n̂i dAint

ð�4pÞ�1ss;intIiðx; ŝinÞV
,

ŝin � n̂i40. (25)

Since, according to Kirchhoff’s law, a0ijðŝÞ ¼ �
0
jiðŝÞ, the

definitions of the absorption coefficient given by
Eqs. (23) and (24) satisfy the condition of local thermo-
dynamic equilibrium for a small isothermal volume of a
non-scattering medium irradiated from a black source,
Liðr; ŝÞ ¼ Lbjðr; ŝÞ [2,3]. Furthermore, defining

ki � kd;i þ kint; ss;i ¼ ss;d;i þ ss;int; bi ¼ ki þ ss;i,

(26a)

Fiðŝin; ŝÞ ¼
ss;d;iFd;iðŝin; ŝÞ þ ss;intFintðŝin; ŝÞ

ss;i
, (26b)
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leads to

ŝ � rxIi
iðx; ŝÞ ¼ � biI

i
iðx; ŝÞ þ n2

i kd;iI
i
b;iðxÞ þ n2

i kintI
i
b;jðxÞ

þ
ss;i

4p

Z
4p

Ii
iðx; ŝÞFiðŝin; ŝÞdOin. (27)

Eq. (27) reduces to that underlying the analysis in [7,8] for
optically-thin phase i, i.e. kd ¼ ss;d ¼ 0. It is also consis-
tent with the results of the derivation presented in [16].
The boundary condition for Eq. (27) is the same as for Eq.
(18) and is given by Eq. (19).

4. Continuum-scale radiative properties

The radiative coefficients and the scattering phase
functions appearing in Eqs. (18) and (27) can be
determined based on their definitions, Eqs. (12)–(15)
and (22)–(25). Here, an example is given how to obtain
ss;int and Fintðŝin; ŝÞ for a medium consisting of a semi-
transparent phase i and an opaque phase j but the other
radiative properties can be determined analogously.
Consider an averaging volume V ¼ As in a form of a slab,
which is uniformly illuminated with collimated radiation
at a single slab boundary A within the semi-transparent
phase i. The thickness s of the volume is small enough so
that the contribution to the intensity into direction ŝ by
multiple internal scattering and interface reflections, and
the shadowing effects can be neglected. The boundary
area A is large enough so that all typical morphological
interface elements are present in V. It follows from
Eqs. (22) and (25):

ss;int ¼

R
Aint :ŝ�n̂i40 r

0_
ij ðŝÞ exp½�ðkd;i þ ss;d;iÞs

��ŝ � n̂i dAintR
Vi

exp½�ðkd;i þ ss;d;iÞs��dV
;

(28)

Fintðŝ; ŝrÞ �

R
Aint :ŝr �n̂io0 r

00
ijðŝ; ŝrÞ exp½�ðkd;i þ ss;d;iÞs

��ŝ � n̂i ŝr � n̂idAint

ð�4pÞ�1 R
Aint :ŝ�n̂i40 r0\ij ðŝÞ exp½�ðkd;i þ ss;d;iÞs��ŝ � n̂i dAint

;

ŝ � n̂i40; (29)

where s* is the distance from the illuminated boundary to
the nearest interface element dAint measured along the
actual path into the direction ŝ. ŝin and ŝ in Eq. (25) have
been replaced by ŝ and ŝr in Eq. (29), respectively. In the
particular case of optically-thin phase i:

ss;int ¼

R
Aint :ŝ�n̂i40 r

0_
ij ðŝÞŝ � n̂idAint

Vi
; (30)

Fintðŝ; ŝrÞ ¼

R
Aint :ŝ�n̂io0

R
r00ijðŝ; ŝrÞŝ � n̂iŝr � n̂i dAint

ð�4pÞ�1 R
Aint :ŝ�n̂i40 r0\ij ðŝÞŝ � n̂i dAint

; ŝ � n̂i40.

(31)

Eqs. (30) and (31) are consistent with the results of
derivation of radiative properties for uniformly-irradiated
large opaque spheres, given in standard textbooks [2,3].
Eqs. (28) and (29) can be readily solved by the Monte
Carlo method for known exact morphology and radiative
properties of each phase and the interface. A large number
Ni of stochastic rays, which represent the discrete-scale
intensity, are launched within phase i at the illuminated
boundary. Nc,i rays will collide with the interface. Since for
each ray the associated fraction of A is the same and equal
to 1/N, it follows that

ss;int �
�ðkd;i þ ss;d;iÞ

PNc;i

k¼1fr
0_
ij ðŝÞ exp½�ðkd;i þ ss;d;iÞsk�gPNi

k¼1fexp½�ðkd;i þ ss;d;iÞsk�g
;

(32)

Fintðŝ; ŝrÞ �

PNc;i

k¼1fr
00
ijðŝ; ŝrÞ exp½�ðkd;i þ ss;d;iÞsk�ŝr � n̂ig

ð4pÞ�1PNc;i

k¼1fr
0_
ij ðŝÞ exp½�ðkd;i þ ss;d;iÞsk�g

.

(33)

In practice, the size of the base A is limited by the available
size of a medium sample, which can be insufficient to
include all typical morphological interface elements. In
this case, the thin slab V can be replaced by a statistically
equivalent volume consisting of a large number N of
randomly located and oriented sub-volumes, each of
volume As/N. The number of the stochastic rays, the
thickness s and the boundary area A should be chosen by
considering the convergence criteria applied to the
radiative properties.

The approach presented in this paper is based on the
differential interpretation of the radiative properties
associated with the average intensities, as given by Eqs.
(12)–(15), and (22)–(25), i.e. effective attenuation cross-
sections are considered. It is applicable to two-phase
media, in which both phases have high connectivity, or in
which one phase has low connectivity, e.g. it consists of
closed cells or semi-transparent large particles. The
methodology presented in [7,8,10,14] is based on the
integral interpretation of the radiative properties, i.e.
mean penetration paths are considered. MC is directly
used there to determine the mean penetration path, which
in turn is used to calculate the extinction coefficient for
the volume-averaged RTE. This is equivalent to the
assumption Li ¼ Ii

i. However, no limitations are imposed
on the maximum possible path length of a stochastic ray,
which leads to discontinuity in the distribution of
discrete-scale intensity for a low-connectivity phase, to
which in turn the exponential function should be fitted. In
this case, the radiative properties may still be determined
when fitting is performed in the limit of sufficiently short
path lengths. However, this may lead to high uncertainties
in the radiative coefficients and the approach presented in
this paper may be preferred.

Finally, the intrinsic average intensities obtained from
Eq. (18) or (27) are used to calculate the intrinsic average
divergence of radiative flux as [2,3]

hr � qr;iðrÞi
i ¼ kd;i 4pn2

i Ii
b;iðxÞ �

Z 4p

0
Ii
iðx; ŝÞdO

" #
. (34)

Since Eqs. (18) and (27) are subject to the assumptions of
Sections 2 and 3, Eq. (34) can be used only to solve a
volume-averaged energy equation for a given phase to
obtain its volume-averaged temperature [19,20]. A further
development will be pursued to develop continuum-scale
equations for media with spatially varying properties due
to their temperature dependency, space variation of the
internal properties and the morphological characteristics.
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5. Summary and conclusions

The spatial averaging theorem has been applied to
radiative heat transfer in a two-phase medium consisting
of either two semi-transparent or one semi-transparent
and one opaque homogeneous phases. The continuum-
scale equations of radiative transfer and the correspond-
ing boundary conditions were rigorously derived based on
the RTEs and the corresponding boundary conditions
applied at the discrete scale, and by utilizing discrete-
scale radiative properties of each phase and the interface
between the phases. The continuum-scale RTEs are
consistent with those derived independently in [16] by
using a different approach. This confirms that radiative
transfer in heterogeneous two-phase media consisting of
arbitrary-type phases in the range of geometrical optics
can be modeled by a set of two continuum-scale equations
of radiative transfer describing the variation of the
average intensities associated with each phase. A Monte
Carlo methodology for the determination of the con-
tinuum-scale radiative properties was demonstrated for a
medium consisting of an optically-thin phase and an
opaque phase. The approach presented in this paper is
based on the differential interpretation of the continuum-
scale radiative properties. It can be applied to two-phase
media, in which the dispersed phase has arbitrary
connectivity. This makes it an alternative to the integral
approach presented in the previous pertinent studies.
Further work will focus on detailed numerical examina-
tion of the proposed Monte Carlo methodology and on
combined continuum-scale conduction-radiation heat
transfer analysis in two-phase media consisting of
arbitrary-type phases in the range of geometrical optics.

References

[1] Born M, Wolf E. Principles of optics. 7th ed. Cambridge: Cambridge
University Press; 1999.

[2] Siegel R, Howell J. Thermal radiation heat transfer. 4th ed. New
York: Taylor and Francis; 2002.

[3] Modest MF. Radiative heat transfer. 2nd ed. San Diego: Academic
Press; 2003.
[4] Dombrovsky LA. Radiation heat transfer in disperse systems. New
York: Begell House; 1995.
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