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a b s t r a c t

Continuum-scale equations of radiative transfer and corresponding boundary condi-

tions are derived for a general case of a multi-component medium consisting of

arbitrary-type, non-isothermal and non-uniform components in the limit of geometrical

optics. The link between the discrete and continuum scales is established by volume

averaging of the discrete-scale equations of radiative transfer by applying the spatial

averaging theorem. Precise definitions of the continuum-scale radiative properties are

formulated while accounting for the radiative interactions between the components at

their interfaces. Possible applications and simplifications of the presented general

equations are discussed.

Published by Elsevier Ltd.
1. Introduction

Radiative transfer in media consisting of optically
distinct components is encountered in multiple fields of
science and engineering including chemical processing,
combustion, nuclear and civil engineering, atmospheric
sciences, and solar technology.1 An important subset are
media consisting of components in the range of geome-
trical optics [1]. They find applications as reacting packed
beds, porous heat exchangers, radiant absorbers and
burners, and insulating materials. Porous structures used
in high-temperature solar thermal and thermo–chemical
processes to generate power and produce chemicals are of
special interest. Radiative transfer in such materials is
Ltd.

: +1 612 626 1854.

constituent having

scopic level and it

inguishable at the
often predicted by using continuum models employing
appropriate continuum-scale radiative properties [2,3].2

In many engineering applications it is sufficient to
determine the radiative properties prior to the solution
of the radiative transfer equations (RTEs) for selected
medium composition and morphology. This in turn leads
to significant reduction of the overall computational time
as compared to complete discrete-scale radiative transfer
simulations for problems where the RTEs are solved
repeatedly.

Previous pertinent studies on continuum-scale
radiative properties of multi-component media consisting
of individual components in the limit of geometrical
optics include determination of the properties for media
consisting of an optically thin (non-participating)
component and an opaque component [4–8], and for
2 The term continuum scale refers to length scales for which

continuum approach to radiative transfer in multi-component media is

valid. The term discrete scale refers to length scales associated with

single elements of porous structures (particles, pores, struts).
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Nomenclature

A surface area, m2

c constant in Eq. (5a)
c0 speed of light in vacuum, 2.9979�108 m s�1

fv volume fraction
g binary weight function
h Planck’s constant, 6.6261�10�34 Js
I continuum-scale radiative intensity, W m�3

sr�1

i, j component indices
k index of a scalar function
kB Boltzmann’s constant, 1.3807�10�23 JK�1

L discrete-scale radiative intensity, W m�3 sr�1

l term order in function expansion
M number of components
M1 number of semi-transparent components
Ni number of components adjacent to compo-

nent i

Ni,1 number of semi-transparent components ad-
jacent to component i

n number of scalar functions
ni refractive index of component i

n̂ inner unit normal vector
_Q radiative heat transfer rate, W
~r discrete-scale position vector
ŝ unit direction vector
V volume, m3

~x continuum-scale position vector

Greek symbols

b extinction coefficient, m�1

e emissivity
k absorption coefficient, m�1

l wavelength, m
r reflectivity
ss scattering coefficient, m�1

t transmissivity
F scattering phase function
f,c scalar functions
O solid angle, sr

Subscripts

a absorption
b blackbody
d discrete scale
e emission
i, j component indices
i incoming
r reflection
s scattering
t transmission
w continuum-scale medium boundary

Superscripts

u fluctuation
00 bi-directional

directional-hemispherical

Other symbols

/cS superficial average of c
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media consisting of an optically-thin component and a
semi-transparent component [9–13]. These studies show
that the discrete-scale interface and component internal
properties, and the exact internal medium geometry
(morphology) must be known in order to predict the
continuum-scale radiative characteristics. In the studies
[5,7–9,13], the exact geometry of porous media with
irregular boundaries was obtained by employing X-ray
computed tomography. Continuum-scale RTEs were
derived for a medium consisting of large opaque and
spherical particles suspended in a participating gas phase
[14], for a medium consisting of two arbitrary-type and
arbitrary-shaped components [15–18], and formulated for
a medium consisting of two arbitrary-shaped semi-
transparent components [9].

In this paper, we generalize the analysis presented
in [18] to multi-component media consisting of M

arbitrary-type and arbitrary-shaped components in the
limit of geometrical optics [19]. A system of continuum-
scale RTEs and the corresponding boundary conditions are
derived by applying volume averaging to discrete-scale
RTEs and boundary conditions. A single-RTE approach is
formulated for problems, where the overall radiative
fluxes transmitted and/or reflected by a multi-component
medium are of primary interest. The derivations
presented are aimed at providing an analytical basis for
development of ‘ray optics’ based numerical techniques
such as the Monte Carlo ray tracing that can be used to
radiatively characterize media using their structure and
composition. More general derivations of the RTE for
media containing arbitrarily shaped and sized compo-
nents, and accounting for polarization effects, can be
found in [20–22].
2. Basic definitions

Consider the averaging volume V of a multi-compo-
nent medium consisting of M components. Each
component i=1,y,M is characterized by its partial volume
Vi and the corresponding volume fraction fv,i. A scalar
quantity ci for component i can be expressed as

ci ¼/ciSþc
0

i , ð1Þ

where the superficial average, /ciS, is defined as

/ciS¼
def 1

V

Z
V
ci dV , V ¼

XM
i ¼ 1

Vi, ð2Þ
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Fig. 1. Multi-component medium with component designation.
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Assume that the scalar function ci can be expressed as a
product of n scalar functions ci,k, k=1,y,n,

ci ¼
Yn

k ¼ 1

ci,k, ð3Þ

and each of the scalar functions ci,k vanishes outside the
component i, i.e. it can be written in the form

ci,kð~rÞ ¼fi,kð~rÞgið~rÞ, k¼ 1, . . . ,n: ð4Þ

fi,kð~rÞ are scalar functions and gið~rÞ is a normalized binary
weight function,

gið~rÞ ¼
c, ~r 2 Vi,

0, ~r 2 V�Vi,

(
ð5aÞ

fv,i ¼
1

V

Z
V

gið~rÞdV , ð5bÞ

from which it immediately follows that c=1. The first n�1
functions fi,kð~rÞ are required to be smooth in the
averaging volume V. Let ~rk, k=1,y,n�1, be points inside
the averaging volume V such that

fi,kð~rkÞ ¼/fi,kS, k¼ 1, . . . ,n�1: ð6Þ

Functions fi,k, k=1,y,n�1, are developed by using the
Taylor expansion,

fi,kð~rÞ ¼/fi,kSþj~r�~rkj
dfi,k

dj~r�~rkj

����
~rk

þOðj~r�~rkj
2Þ, k¼ 1, . . . ,n�1,

ð7Þ

where O denotes the ‘big O’ Landau order symbol. For
functions fi,k, k = 1, y,n�1, varying weakly in the
averaging volume V,

Oðj~r�~rkj
lÞ � 0, lZ1, k¼ 1, . . . ,n�1: ð8Þ

Therefore, the fluctuations in the first n�1 functions fi,k

vanish,

f0i,1ð~rÞ � 0, ð9aÞ

. . . . . . . . .

f0i,n�1ð
~rÞ � 0: ð9bÞ

Consequently, the superficial average of the scalar func-
tion ci can be written as

/ciS¼
Yn

k ¼ 1

ci,k

* +
�/ci,nScn�1

Yn�1

k ¼ 1

fi,k: ð10Þ

The relation between the superficial average of the
discrete-scale gradient of ci and the continuum-scale
gradient of /ciS is given by the spatial averaging
theorem (SAT) [23,24]:

/r~rciS¼r~x/ciS�
1

V

XNi

j ¼ 1

Z
Aij

cin̂ ji dA, ð11Þ

where ~r and ~x are the discrete-scale and continuum-scale
position vectors, respectively [23]. Aij is the interface
surface area between the component i and the component
j adjacent to i in the averaging volume V. Ni is the total
number of components adjacent to the component i. n̂ ji is
the inner unit normal vector at the point ~r ij of the
interface Aij, i.e. n̂ ji points into the component i.

Finally, the averaging volume V is assumed to be
(i) sufficiently large to include all typical morphological
structures of the multi-component medium and
(ii) sufficiently small as compared to the overall size of
the multi-component medium so that /cS and /r~rciS
can be assumed to be continuous scalar and vector fields,
respectively.

3. Continuum-scale equations of radiative transfer

Consider a multi-component medium consisting of
i=1,y,M1 and i=M1+1,y,M semi-transparent and opaque
components, respectively, each of an arbitrary shape. Each
component i is adjacent to j=1,y,Ni,1 and j=Ni,1+1,y,Ni

semi-transparent and opaque components, respectively
(see Fig. 1). The analysis presented is subject to the
following assumptions: (i) all components are isotropic;
(ii) all components are non-polarizing and the state of
polarization can be neglected; (iii) all components are at
local thermodynamic equilibrium; (iv) characteristic
dimensions of all components are much larger than the
radiation wavelengths of interest so that laws of
geometrical optics are valid in each component; (v)
diffraction effects are negligible; (vi) dependent-
scattering effects are negligible; (vii) all components are
at rest as compared to the speed of light; (viii) radiative
transfer in each component is quasi-steady.
Each component i is characterized by the set of the
discrete-scale optical and radiative properties: the
effective refractive index ni ¼ const, the absorption
and scattering coefficients, kd,i and ss,d,i, respectively,
and the scattering phase function Fd,i. ss,d,i and Fd,i are
introduced to account for possible internal microscopic
inhomogeneities of the components, and are to be
determined by employing theories appropriate for
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characteristic length scales of the inhomogeneities.
Furthermore, each component i is characterized by its
temperature Ti, i.e. the components are allowed to be at
thermal non-equilibrium with respect to each other.

The quasi-steady discrete-scale intensity in each
component i can be determined by solving the corre-
sponding quasi-steady discrete-scale RTEs [25–27]:

ŝ � r~r Lið~r,ŝÞ ¼ �bd,ið~rÞLið~r,ŝÞþkd,ið~rÞLb,ið~rÞ

þ
ss,d,ið~rÞ

4p

Z 4p

Oi ¼ 0
Lið~r,ŝiÞFd,ið~r,ŝi,ŝÞdOi,

i¼ 1, . . . ,M, ð12Þ

where the spectral subscript l has been omitted for
brevity. Lb,i is the spectral blackbody intensity inside the
component i. For the constant refractive index ni, it is
given by

Lb,ið~rÞ ¼
2hc2

0

n2
i l

5 exp
hc0

nikBlTið~rÞ
�1

� �� � ð13Þ

and l is radiation wavelength in the component i. While
Eq. (12) and, consequently, the following analysis requires
the effective refractive index to be constant within a
component, further reading on treatment of media with
graded refractive index can be found in [28,29]. Eq. (12) is
subject to the following boundary condition at Aij,ŝ �n̂ ji 40:

Lið~r ij,ŝÞ ¼

Z
Oŝ i �n̂ ji 4 0

tji
00ð~rij,ŝi,ŝÞLjð~r ij,ŝiÞŝi � n̂ ji dOi

�

Z
Oŝ i �n̂ ji o 0

rij
00ð~r ij,ŝi,ŝÞLið~r ij,ŝiÞŝ i � n̂ ji dOi,

j¼ 1, . . . ,Ni, ð14Þ

where ~r ij is a position vector at the interface Aij. The bi-
directional reflection and transmission functions, r00 ij and
t00 ij, respectively, must satisfy the condition of radiative
intensity conservation for incidence at a reflecting–
transmitting boundary:Z
Oŝ �n̂ ji 4 0

rij
00ð~rij,ŝi,ŝÞŝ � n̂ji dO�

Z
Oŝ �n̂ ji o 0

tij
00ð~r ij,ŝi,ŝÞŝ � n̂ ji dO

¼ tð~r ij,ŝiÞþ t ~r ij,ŝi

� �
¼ 1, ŝi � n̂jio0: ð15Þ

For media with small discontinuities present between the
components as compared to the radiation wavelengths of
interest and to the characteristic dimensions of the
components, rij

00 and tij
00 are to be determined by including

micro-scale radiative transfer effects at the interfaces. The
intensity Lj in the boundary condition (14) can formally be
obtained by solving Eq. (12) for all components j=1,y,Ni.
However, for opaque components j=Ni,1+1,y,Ni, the
absorption coefficient approaches infinity, kj-1, and the
complete solutions to Eq. (12) for these components
are not required. A closer inspection of Eq. (12) shows
that the intensity Ljð~r ij,ŝÞ results only from local emission
within the component j in the vicinity of the interface. This
allows us to rewrite Eqs. (12) and (14) as

ŝ � r~r Lið~r,ŝÞ ¼�bd,ið~rÞLið~r,ŝÞþkd,ið~rÞLb,ið~rÞ

þ
ss,d,ið~rÞ

4p

Z 4p

Oi ¼ 0
Lið~r,ŝiÞFd,ið~r,ŝi,ŝÞdOi,

i¼ 1, . . . ,M1, ð16Þ
Lið~r ij,ŝÞ ¼

Z
Oŝ i �n̂ ji 4 0

tji
00ð~rij,ŝi,ŝÞLjð~rij,ŝiÞŝi � n̂ji dOi

�

Z
Oŝ i �n̂ ji o 0

rij
00ð~r ij,ŝi,ŝÞLið~r ij,ŝiÞŝi � n̂ji dOi,

j¼ 1, . . . ,Ni,1, ð17aÞ

Lið~r ij,ŝÞ ¼ e0jið~rij,ŝÞLb,jð~r ijÞ�

Z
Oŝ i �n̂ ji o 0

rij
00ð~r ij,ŝi,ŝÞLið~r ij,ŝiÞŝ i � n̂ji dOi,

j¼Ni,1þ1, . . . ,Ni, ð17bÞ

where e0ji is the directional spectral emissivity of the
interface between components j and i defined as

e0jið~r ij,ŝÞ ¼
def Le,ið~r ij ,ŝÞ

Lb,jð~r ijÞ
: ð18Þ

Lb,jð~r ijÞ is the blackbody intensity emitted by the compo-
nent j into the component i,

Lb,jð~r ijÞ ¼
2hc2

0

n2
i l

5 exp
hc0

nikBlTjð~r ijÞ
�1

 !" # : ð19Þ

Note that the interface emissivity e0jið~r ij,ŝÞ captures the
interface transmission from the component j into the
component i and the definition (18) follows the definition
of the emissivity of opaque surfaces [26].

The condition of radiative intensity conservation at the
interface between the semi-transparent component i and the
opaque component j can be written analogously to Eq. (15),

Z
Oŝ �n̂ ji 4 0

rij
00ð~r ij,ŝi,ŝÞŝ � n̂ji dOþa0ijð~rij,ŝiÞ¼ tð~r ij,ŝiÞþa0ijð~r ij,ŝiÞ¼1,

ŝi � n̂ jio0, ð20Þ

where Kirchhoff’s law,

a0ijð~r,ŝiÞ ¼ e0jið~r,�ŝiÞ, ð21Þ

has been applied. The spectral superficial average intensity
associated with the component i is defined as

/Lið~r,ŝÞS� Iið~x,ŝÞ ¼
def d _Q ð~x,ŝÞ

dldA dO
, ð22Þ

where d _Q ð~x,ŝÞ is the spectral radiative heat transfer rate in
the wavelength interval dl, the solid angle dO around
direction ŝ, and through the surface area dA of the multi-
component medium normal to ŝ. Applying Eq. (2) to each
term of Eq. (16) leads to

/ŝ � r~r Lið~r,ŝÞS¼�/bd,ið~rÞLið~r,ŝÞSþ/kd,ið~rÞLb,ið~rÞS

þ
1

4p ss,d,ið~rÞ

Z 4p

Oi ¼ 0
Lið~r,ŝiÞFd,ið~r,ŝi,ŝÞdOi

* +
,

i¼ 1, . . . ,M1: ð23Þ

The left-hand side of Eq. (23) is developed by applying SAT,
Eq. (11). The terms on the right-hand side of Eq. (23)
are developed by applying Eq. (10), i.e. the variation of the
discrete-scale radiative properties is small enough so that the
corresponding variation of the discrete scale radiative
properties inside the averaging volume V becomes negligible.
Interchanging the order of integration with respect to the
solid angle Oi and the volume V in the incoming scattering
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term results in

ŝ � r~x Iið~x,ŝÞ ¼ �bd,ið~xÞIið~x,ŝÞþkd,ið~xÞIb,ið~xÞ

þ
ss,d,ið~xÞ

4p

Z 4p

Oi ¼ 0
Iið~x,ŝiÞFd,ið~x,ŝi,ŝÞdOi

þ
1

V

XNi

j ¼ 1

Z
Aij

Lið~r,ŝÞŝ � n̂ ji dA i¼ 1, . . . ,M1: ð24Þ

The last term on the right-hand side of Eq. (24) represents
the contribution to the spectral superficial average
radiative heat transfer rate per unit volume and solid
angle around the direction ŝ by radiative intensity in
component i launched at Aij,ŝ �n̂ ji 40 into the direction ŝ and
removed in component i at Aij,ŝ �n̂ ji o0 from the direction ŝ,
respectively. Thus, the surface integral in Eq. (24) is split
into two parts,Z

Aij

Lið~r,ŝÞŝ � n̂ji dA¼

Z
Aij,ŝ �n̂ ji 4 0

Lið~r,ŝÞŝ � n̂ji dAþ

Z
Aij,ŝ �n̂ ji o 0

Lið~r,ŝÞŝ � n̂ji dA:

ð25Þ

The first term on the right-hand side of Eq. (25) is developed
by using the boundary conditions, Eqs. (17a) and (17b). The
second term on the right-hand side of Eq. (25) is developed
by using Eqs. (15) and (20). Eq. (25) becomesZ

Ai

Lið~r,ŝÞŝ � n̂ji dA¼
XNi

j ¼ Ni,1þ1

Z
Aij,ŝ �n̂ ji 4 0

e0jið~r ij,ŝÞLb,jð~rijÞŝ � n̂ji dA

�
XNi

j ¼ 1

Z
Aij,ŝ �n̂ ji 4 0

Z
Oŝ i �n̂ ji o0

rij
00ð~r,ŝi,ŝÞLið~r,ŝiÞŝi � n̂ji dOiŝ � n̂ ji dA

þ
XNi,1

j ¼ 1

Z
Aij,ŝ �n̂ ji 4 0

Z
Oŝ i
�n̂ ji 40

tji
00ð~r,ŝi,ŝÞLjð~r,ŝiÞŝi � n̂ji dOiŝ � n̂ ji dA

þ
XNi

j ¼ Ni,1þ 1

Z
Aij,ŝ �n̂ ji o 0

ð~r,ŝÞLið~r,ŝÞŝ � n̂ji dA

þ
XNi

j ¼ 1

Z
Aij,ŝ �n̂ ji o 0

tð~r,ŝÞLið~r,ŝÞŝ � n̂ji dA

þ
XNi,1

j ¼ 1

Z
Aij,ŝ �n̂ ji o 0

tð~r,ŝÞLið~r,ŝÞŝ � n̂ji dA ð26Þ

The first three terms on the right-hand side of Eq. (26)
quantify the augmentation of the superficial average
radiative heat transfer rate per unit solid angle around
direction ŝ in the component i resulting from the
intensities emitted, reflected, and transmitted into the
component i, respectively. The last three terms on
the right-hand side of Eq. (26) quantify the attenuation
of the superficial average radiative heat transfer rate per
unit solid angle around direction ŝ by interface absorption,
reflection, and transmission, respectively. Thus, recalling
the definition of the superficial average intensity, Eq. (22),
the following absorption and scattering coefficients, and
the scattering phase functions associated with the super-
ficial average intensities Ii and Ib,j are postulated:

kijð~xÞ ¼
def
�

R
Aij,ŝ �n̂ ji o 0

a0ijð~r ij,ŝÞLið~r,ŝÞŝ � n̂ji dA

Iið~x,ŝÞV
, ð27Þ

kjið~xÞ ¼
def

R
Aij,ŝ �n̂ ji 4 0

e0jið~r ij,ŝÞLb,jð~r,ŝÞŝ � n̂ ji dA

Ib,jð~x,ŝÞV
, ð28Þ
ss,r,ijð~xÞ ¼
def
�

R
Aij,ŝ �n̂ ji o 0

tð~r,ŝÞLið~r,ŝÞŝ � n̂ji dA

Iið~x,ŝÞV
, ð29Þ

ss,t,ijð~xÞ ¼
def
�

R
Aij,ŝ �n̂ ji o 0

tð~r,ŝÞLið~r,ŝÞŝ � n̂ji dA

Iið~x,ŝÞV
, ð30Þ

Fr,ijð~x,ŝi,ŝÞ ¼
def
�

R
Aij,ŝ �n̂ ji 4 0

rij
00ð~r,ŝi,ŝÞLið~r,ŝiÞŝi � n̂ jiŝ � n̂ ji dA

ð4pÞ�1ss,r,ijIið~x,ŝÞV
,

ŝi � n̂ jio0, ð31Þ

Ft,jið~x,ŝi,ŝÞ ¼
def

R
Aij,ŝ �n̂ ji 4 0

tji
00ð~r,ŝi,ŝÞLjð~r,ŝiÞŝi � n̂ jiŝ � n̂ ji dA

ð4pÞ�1ss,t,jiIjð~x,ŝÞV
,

ŝi � n̂ ji40: ð32Þ

Note that the blackbody intensity Ib,j appearing in
Eq. (28) is obtained by applying Eq. (2) to a discrete-scale
blackbody intensity that would fill the component
i as a result of emission from a black interface
Aij,ŝ �n̂ ji 40 into the component i, e0ji ¼ 1. Substituting
Eqs. (25)–(32) into Eq. (24) and omitting for brevity the
position vector notation in the radiative properties,
results in:

ŝ � r~x Iið~x,ŝÞ ¼ � bd,iþ
XNi

j ¼ Ni,1þ1

kijþ
XNi,1

j ¼ 1

ss,t,ijþ
XNi

j ¼ 1

ss,r,ij

2
4

3
5Iið~x,ŝÞ

þkd,iIb,ið~x,ŝÞþ
XNi

j ¼ Ni,1þ1

kjiIb,jð~x,ŝÞ

þ
ss,d,i

4p

Z 4p

Oi ¼ 0
Iið~x,ŝiÞFd,iðŝi,ŝÞdOi

þ
XNi,1

j ¼ 1

ss,t,ji

4p

Z 4p

Oi ¼ 0
Ijð~x,ŝiÞFt,jiðŝi,ŝÞdOi

þ
XNi

j ¼ 1

ss,r,ij

4p

Z 4p

Oi ¼ 0
Iið~x,ŝiÞFr,ijðŝi,ŝÞdOi,

i¼ 1, . . . ,M1: ð33Þ

The set of Eqs. (33) presents generalization of Eq. (1) in
[9], Eqs. (8) and (9) in [15], and Eqs. (18) and (27) in [18],
for a multi-component medium consisting of any number
of semi-transparent and opaque components. To our best
knowledge, it is the most complete formulation of
continuum radiative transfer in multi-component media
with the individual components in the range of geome-
trical optics.

Eqs. (27)–(32) provide the mathematical basis for
development of numerical techniques for determination
of continuum-scale radiative properties utilizing the exact
geometry of multi-component media. They require the
knowledge of the complete actual and blackbody discrete-
scale radiative intensity fields in each component
obtained for a selected model problem. The general
analytical proof that the resulting continuum-scale
radiative properties for a given medium are independent
of radiative intensities (boundary conditions applied in
the model problem), and depend only on the discrete-
scale radiative properties and morphology, is beyond the
scope of the present study. Once the continuum-scale
radiative properties are known for a given medium,
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Eqs. (33) can be solved for prescribed boundary conditions
by using standard RTE solution techniques. Although the
discrete-scale radiative intensities are not longer needed
to solve the continuum-scale RTEs, they are still required
to formulate the continuum-scale boundary conditions as
described in the next section.

4. Continuum-scale boundary conditions

Eqs. (33) are subject to boundary conditions at the
wall-medium interface at ŝ � n̂w40, where n̂w is a unit
normal vector pointing from the wall into the medium.
The wall is assumed to consist of only a single component
that can be either semi-transparent or opaque. The
discrete-scale boundary conditions at the boundary of
the multi-component medium are formulated analo-
gously to the boundary conditions (17a) and (17b). They
read for the semi-transparent and opaque walls, respec-
tively:

Lið~r iw,ŝÞ ¼

Z
Oŝ i �n̂wi 4 0

twi
00ð~r iw,ŝi,ŝÞLwð~riw,ŝiÞŝi � n̂wi dOi

�

Z
Oŝ i �n̂wi o 0

riw
00ð~r iw,ŝi,ŝÞLið~r iw,ŝiÞŝi � n̂wi dOi,

ð34aÞ

Lið~r iw,ŝÞ ¼ e0wið
~riw,ŝÞLb,wð~riwÞ

�

Z
Oŝ i �n̂wi o 0

riw
00ð~r iw,ŝi,ŝÞLið~r iw,ŝiÞŝi � n̂wi dOi,

ð34bÞ

The variation of the discrete-scale radiative properties and
the curvature of the wall-medium interface are assumed
to be negligible over the interface area associated with the
averaging volume V adjacent to said boundary, Aiw,ŝ�n̂wi 40.
The continuum-scale boundary conditions are obtained
by surface averaging of the boundary intensity Lið~r iw,ŝÞ,

Iið~xw,ŝÞ ¼
def

R
Aiw,ŝ �n̂wi 4 0

Lið~r iw,ŝÞdAR
Aw ,ŝ �n̂w 40 dA

, ð35Þ

where Aw is the portion of the wall-medium interface
inside the averaging volume V adjacent to the wall.
Applying Eq. (35) to Eqs. (34a) and (34b), and inter-
changing the order of integration with respect to Oi and A

on the right-hand side of the resulting equation leads to

Iið~xw,ŝÞ ¼

Z
Oŝ i �n̂wi 4 0

twi
00ð~xw,ŝi,ŝÞIwið~xw,ŝiÞŝi � n̂wi dOi

�

Z
Oŝ i �n̂wi o 0

riw
00ð~xw,ŝi,ŝÞIið~xw,ŝiÞŝi � n̂wi dOi, ð36aÞ

Iið~xw,ŝÞ ¼ e0wið
~xw,ŝÞIb,wið~xw,ŝÞ

�

Z
Oŝ i �n̂wi o 0

riw
00ð~xw,ŝi,ŝÞIið~xw,ŝiÞŝi � n̂wi dOi: ð36bÞ

5. Single radiative transfer equation approach

A single radiative transfer equation is typically
employed to model radiative transfer in disperse systems.
A single intensity through the host phase is sought in this
case and the radiative properties of the disperse phase are
usually determined by assuming its uniform illumination
and low volume fraction [25–27]. For multi-component
media with considerable volume fractions of the compo-
nents in the limit of geometrical optics, a complete
solution to the set of Eqs. (33) is generally required as
shown in the previous section. Using the following
definitions:

I¼
def
XM1

i ¼ 1

Ii, ð37Þ

bI¼
def
XM1

i ¼ 1

bd,iþ
XNi

j ¼ Ni,1þ1

kijþ
XNi,1

j ¼ 1

ss,t,ijþ
XNi

j ¼ 1

ss,r,ij

0
@

1
AIi, ð38Þ

kIb ¼
def
XM1

i ¼ 1

kd,iIb,iþ
XNi

j ¼ Ni,1þ1

kjiIb,j

0
@

1
A, ð39Þ

ssFI¼
def
XM1

i ¼ 1

ss,d,iFd,iþ
XNi

j ¼ 1

ss,r,ijFr,ij

0
@

1
AIiþ

XNi,1

j ¼ 1

ss,t,jiFt,jiIj

2
4

3
5,

ð40Þ

the set of Eqs. (33) can formally be reduced to a single RTE
for a single effective multi-component intensity,

ŝ � r~x Ið~x,ŝÞ ¼ �bð~xÞIð~x,ŝÞþkð~xÞIbð~xÞ

þ
ssð~xÞ

4p

Z 4p

Oi ¼ 0
Ið~x,ŝiÞFð~x,ŝi,ŝÞdOi: ð41Þ

The effective radiative properties, as defined by
Eqs. (37)–(40) depend in this case on the average
intensities associated with the individual components,
and they cannot in general be separated from the single
effective intensity, i.e. the effective radiative properties
cannot be viewed as medium physical properties. More-
over, since only a single intensity is used, Eq. (41) cannot
be used to model multi-component media at thermal
non-equilibrium between the components, where the
divergence of radiative flux is needed for individual
components.

6. Summary and conclusions

In this paper, we have formulated a mathematical
model for radiative transfer and characterization of
multi-component participating media with the individual
components in the limit of geometrical optics. This work
has been done in response to a growing number of studies
on the development of numerical techniques for radiative
transfer modeling and characterization of complex media
consisting of components in the limit of geometrical
optics. The set of governing continuum-scale equations of
radiative transfer, and the corresponding relations for
radiative properties and boundary conditions were
derived by using the discrete-scale equations of radiative
transfer, radiative properties, and boundary conditions by
applying the spatial averaging theorem. The formulation
presented unifies the two approaches of [18] derived
separately for media consisting either of two
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semi-transparent components or of one semi-transparent
component and one opaque component.

The relations presented provide a complete mathema-
tical basis for developing new methods for radiative
characterization of multi-component media. They are
particularly suited for Monte Carlo ray tracing techniques
that utilize exact geometry of complex media either
generated artificially or obtained experimentally for real
media, e.g. by employing tomography techniques.
Discrete and continuum modeling approaches pertaining
to the analytical formulation presented in this paper have
recently been examined for real two-phase media with
complex geometries such as reticulate porous ceramics
and packed beds of semi-transparent calcium carbonate
particles [30].

The analytical derivations show that determination of
continuum-scale radiative properties for a particular
medium requires in general the knowledge of complete
discrete-scale radiative intensity fields in all components
and intensity distributions at the medium boundary.
These intensities can be obtained by considering a simple
radiative transfer model problem involving the medium of
interest. The definitions of radiative properties provided
in this study will be used in following studies to verify the
hypothesis of their independence of radiative boundary
conditions applied in a model problem.
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