173 research outputs found

    Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose

    Get PDF
    Wild-type strains of Escherichia coli are normally unable to metabolize cellobiose. However, cellobiose-positive (Cel+) mutants arise upon prolonged incubation on media containing cellobiose as the sole carbon source. We show that the Cel+ derivatives carry two classes of mutations that act concertedly to alter the regulation of the chb operon involved in the utilization of N,N'-diacetylchitobiose. These consist of mutations that abrogate negative regulation by the repressor NagC as well as single base-pair changes in the transcriptional regulator chbR that translate into single-amino-acid substitutions. Introduction of chbR from two Cel+ mutants resulted in activation of transcription from the chb promoter at a higher level in the presence of cellobiose, in reporter strains carrying disruptions of the chromosomal chbR and nagC. These transformants also showed a Cel+ phenotype on MacConkey cellobiose medium, suggesting that the wild-type permease and phospho-β-glucosidase, upon induction, could recognize, transport and cleave cellobiose respectively. This was confirmed by expressing the wild-type genes encoding the permease and phospho-β-glucosidase under a heterologous promoter. Biochemical characterization of one of the chbR mutants, chbRN238S, showed that the mutant regulator makes stronger contact with the target DNA sequence within the chb promoter and has enhanced recognition of cellobiose 6-phosphate as an inducer compared with the wild-type regulator

    Force dysmetria in spinocerebellar ataxia 6 correlates with functional capacity

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is a genetic disease that causes pure cerebellar degeneration affecting walking, balance, and coordination. One of the main symptoms of SCA6 is dysmetria. The magnitude of dysmetria and its relation to functional capacity in SCA6 has not been studied. Our purpose was to quantify dysmetria and determine the relation between dysmetria and functional capacity in SCA6. Ten individuals diagnosed and genetically confirmed with SCA6 (63.7 ± 7.02yrs) and nine age-matched healthy controls (65.9 ± 8.5yrs) performed goal-directed isometric contractions with the ankle joint. Dysmetria was quantified as the force and time error during goal-directed contractions. SCA6 functional capacity was determined by ICARS and SARA clinical assessments. We found that SCA6 participants exhibited greater force dysmetria than healthy controls (P < 0.05), and reduced time dysmetria than healthy controls (P < 0.05). Only force dysmetria was significantly related to SCA6 functional capacity, as measured with ICARS kinetic score (R2 = 0.63), ICARS total score (R2 = 0.43), and SARA total score (R2 = 0.46). Our findings demonstrate that SCA6 exhibit force dysmetria and that force dysmetria is associated to SCA6 functional capacity. Quantifying force and time dysmetria in individuals with SCA6 could provide a more objective evaluation of the functional capacity and disease state in SCA6

    Fragile X-associated tremor ataxia syndrome with co-occurrent progressive supranuclear palsy-like neuropathology

    Full text link
    Abstract Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer’s disease (AD) and Parkinson’s disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide. In addition, we describe prominent neuronal and glial tau pathology representing changes seen in progressive supranuclear palsy (PSP). The highest abundance of the respective pathological changes was seen in distinct brain regions indicating an incidental, rather than causal correlation.https://deepblue.lib.umich.edu/bitstream/2027.42/152173/1/40478_2019_Article_818.pd

    Analysis of Nigerians with Apparently Sporadic Parkinson Disease for Mutations in LRRK2, PRKN and ATXN3

    Get PDF
    Several genetic variations have been associated with Parkinson disease in different populations over the past few years. Although a considerable number of worldwide populations have been screened for these variants, results from Sub-Saharan populations are very scarce in the literature. In the present report we have screened a cohort of Parkinson disease patients (n = 57) and healthy controls (n = 51) from Nigeria for mutations in the genes PRKN, LRRK2 and ATXN3. No pathogenic mutations were found in any of the genes. Hence, common pathogenic mutations in these genes, observed in several different populations, are not a frequent cause of Parkinson disease in Nigeria

    Impact of H1N1 on Socially Disadvantaged Populations: Systematic Review

    Get PDF
    The burden of H1N1 among socially disadvantaged populations is unclear. We aimed to synthesize hospitalization, severe illness, and mortality data associated with pandemic A/H1N1/2009 among socially disadvantaged populations.Studies were identified through searching MEDLINE, EMBASE, scanning reference lists, and contacting experts. Studies reporting hospitalization, severe illness, and mortality attributable to laboratory-confirmed 2009 H1N1 pandemic among socially disadvantaged populations (e.g., ethnic minorities, low-income or lower-middle-income economy countries [LIC/LMIC]) were included. Two independent reviewers conducted screening, data abstraction, and quality appraisal (Newcastle Ottawa Scale). Random effects meta-analysis was conducted using SAS and Review Manager.Sixty-two studies including 44,777 patients were included after screening 787 citations and 164 full-text articles. The prevalence of hospitalization for H1N1 ranged from 17-87% in high-income economy countries (HIC) and 11-45% in LIC/LMIC. Of those hospitalized, the prevalence of intensive care unit (ICU) admission and mortality was 6-76% and 1-25% in HIC; and 30% and 8-15%, in LIC/LMIC, respectively. There were significantly more hospitalizations among ethnic minorities versus non-ethnic minorities in two studies conducted in North America (1,313 patients, OR 2.26 [95% CI: 1.53-3.32]). There were no differences in ICU admissions (n = 8 studies, 15,352 patients, OR 0.84 [0.69-1.02]) or deaths (n = 6 studies, 14,757 patients, OR 0.85 [95% CI: 0.73-1.01]) among hospitalized patients in HIC. Sub-group analysis indicated that the meta-analysis results were not likely affected by confounding. Overall, the prevalence of hospitalization, severe illness, and mortality due to H1N1 was high for ethnic minorities in HIC and individuals from LIC/LMIC. However, our results suggest that there were little differences in the proportion of hospitalization, severe illness, and mortality between ethnic minorities and non-ethnic minorities living in HIC

    Multiscale multifactorial approaches for engineering tendon substitutes

    Get PDF
    The physiology of tendons and the continuous strains experienced daily make tendons very prone to injury. Excessive and prolonged loading forces and aging also contribute to the onset and progression of tendon injuries, and conventional treatments have limited efficacy in restoring tendon biomechanics. Tissue engineering and regenerative medicine (TERM) approaches hold the promise to provide therapeutic solutions for injured or damaged tendons despite the challenging cues of tendon niche and the lack of tendon-specific factors to guide cellular responses and tackle regeneration. The roots of engineering tendon substitutes lay in multifactorial approaches from adequate stem cells sources and environmental stimuli to the construction of multiscale 3D scaffolding systems. To achieve such advanced tendon substitutes, incremental strategies have been pursued to more closely recreate the native tendon requirements providing structural as well as physical and chemical cues combined with biochemical and mechanical stimuli to instruct cell behavior in 3D architectures, pursuing mechanically competent constructs with adequate maturation before implantation.Authors acknowledge the project “Accelerating tissue engineering and personalized medicine discoveries by the integration of key enabling nanotechnologies, marinederived biomaterials and stem cells,” supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Authors acknowledge the H2020 Achilles Twinning Project No. 810850, and also the European Research Council CoG MagTendon No. 772817, and the FCT Project MagTT PTDC/CTM-CTM/ 29930/2017 (POCI-01-0145-FEDER-29930

    The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    Get PDF
    BACKGROUND: A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS: Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS: Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments

    Consensus-based care recommendations for adults with myotonic dystrophy type 1

    Get PDF
    Purpose of review Myotonic dystrophy type 1 (DM1) is a severe, progressive genetic disease that affects between 1 in 3,000 and 8,000 individuals globally. No evidence-based guideline exists to inform the care of these patients, and most do not have access to multidisciplinary care centers staffed by experienced professionals, creating a clinical care deficit. Recent findings The Myotonic Dystrophy Foundation (MDF) recruited 66 international clinicians experienced in DM1 patient care to develop consensus-based care recommendations. MDF created a 2-step methodology for the project using elements of the Single Text Procedure and the Nominal Group Technique. The process generated a 4-page Quick Reference Guide and a comprehensive, 55-page document that provides clinical care recommendations for 19 discrete body systems and/or care considerations. Summary The resulting recommendations are intended to help standardize and elevate care for this patient population and reduce variability in clinical trial and study environments. Described as “one of the more variable diseases found in medicine,” myotonic dystrophy type 1 (DM1) is an autosomal dominant, triplet-repeat expansion disorder that affects somewhere between 1:3,000 and 1:8,000 individuals worldwide.1 There is a modest association between increased repeat expansion and disease severity, as evidenced by the average age of onset and overall morbidity of the condition. An expansion of over 35 repeats typically indicates an unstable and expanding mutation. An expansion of 50 repeats or higher is consistent with a diagnosis of DM1. DM1 is a multisystem and heterogeneous disease characterized by distal weakness, atrophy, and myotonia, as well as symptoms in the heart, brain, gastrointestinal tract, endocrine, and respiratory systems. Symptoms may occur at any age. The severity of the condition varies widely among affected individuals, even among members of the same family. Comprehensive evidence-based guidelines do not currently exist to guide the treatment of DM1 patients. As a result, the international patient community reports varied levels of care and care quality, and difficulty accessing care adequate to manage their symptoms, unless they have access to multidisciplinary neuromuscular clinics. Consensus-based care recommendations can help standardize and improve the quality of care received by DM1 patients and assist clinicians who may not be familiar with the significant variability, range of symptoms, and severity of the disease. Care recommendations can also improve the landscape for clinical trial success by eliminating some of the inconsistencies in patient care to allow more accurate understanding of the benefit of potential therapies
    corecore