3,664 research outputs found
The Orbital Structure of Dark Matter Halos with Gas
With the success of the Chandra and XMM missions and the maturation of
gravitational lensing techniques, powerful constraints on the orbital structure
of cluster dark matter halos are possible. I show that the X-ray emissivity and
mass of a galaxy cluster uniquely specify the anisotropy and velocity
dispersion profiles of its dark matter halo. I consider hydrostatic as well as
cooling flow scenarios, and apply the formalism to the lensing cluster
CL0024+16 and the cooling flow cluster Abell 2199. In both cases, the model
predicts a parameter-free velocity dispersion profile that is consistent with
independent optical redshift surveys of the clusters.Comment: 17 pages, 12 figures; to appear in the Astrophysical Journa
A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications
Citation: Niknam, S., Nasir, A. A., Mehrpouyan, H., & Natarajan, B. (2016). A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications. Ieee Access, 4, 5640-5648. doi:10.1109/access.2016.2604364Emerging fifth generation (5G) wireless networks require massive bandwidth in higher frequency bands, extreme network densities, and flexibility of supporting multiple wireless technologies in order to provide higher data rates and seamless coverage. It is expected that the utilization of the large bandwidth in the millimeter-wave (mmWave) band and deployment of heterogeneous networks (HetNets) will help address the data rate requirements of 5G networks. However, high pathloss and shadowing in the mmWave frequency band, strong interference in the HetNets due to massive network densification, and coordination of various air interfaces are challenges that must be addressed. In this paper, we consider a relay based multiband orthogonal frequency division multiple access HetNet in which mmWave small cells are deployed within the service area of macro cells. In particular, we attempt to exploit the distinct propagation characteristics of mmWave bands (i.e., 60 GHz-the V-band and 70-80 GHz the E-band) and the long term evolution band to maximize overall data rate of the network via efficient resource allocation. The problem is solved using a modified dual decomposition approach and then a low complexity greedy solution based on the iterative activity selection algorithm is presented. Simulation results show that the proposed approach outperforms conventional schemes
Evaluation of the feasibility and acceptability of the 'Care for Stroke' intervention in India, a smartphone-enabled, carer-supported, educational intervention for management of disability following stroke.
OBJECTIVES: (1) To identify operational issues encountered by study participants in using the 'Care for Stroke' intervention; (2) to evaluate the feasibility and acceptability of the intervention. DESIGN: Mixed-methods research design. SETTING: Participant's home. Participants were selected from a tertiary hospital in Chennai, South India. PARTICIPANTS: Sixty stroke survivors treated and discharged from the hospital, and their caregivers. INTERVENTION: 'Care for Stroke' is a smartphone-enabled, educational intervention for management of physical disabilities following stroke. It is delivered through a web-based, smartphone-enabled application. It includes inputs from stroke rehabilitation experts in a digitised format. METHODS: Evaluation of the intervention was completed in two phases. In the first phase, the preliminary intervention was field-tested with 30 stroke survivors for 2 weeks. In the second phase, the finalised intervention was provided to a further 30 stroke survivors to be used in their homes with support from their carers for 4 weeks. PRIMARY AND SECONDARY OUTCOME MEASURES: PRIMARY OUTCOMES: (1) operational difficulties in using the intervention; (2) feasibility and acceptability of the intervention in an Indian setting. Disability and dependency were assessed as secondary outcomes. RESULTS: Field-testing identified operational difficulties related to connectivity, video-streaming, picture clarity, quality of videos, and functionality of the application. The intervention was reviewed, revised and finalised before pilot-testing. Findings from the pilot-testing showed that the 'Care for Stroke' intervention was feasible and acceptable. Over 90% (n=27) of the study participants felt that the intervention was relevant, comprehensible and useful. Over 96% (n=29) of the stroke survivors and all the caregivers (100%, n=30) rated the intervention as excellent and very useful. These findings were supported by qualitative interviews. CONCLUSIONS: Evaluation indicated that the 'Care for Stroke' intervention was feasible and acceptable in an Indian context. An assessment of effectiveness is now warranted
The statistics of particle velocities in dense granular flows
We present measurements of the particle velocity distribution in the flow of
granular material through vertical channels. Our study is confined to dense,
slow flows where the material shears like a fluid only in thin layers adjacent
to the walls, while a large core moves without continuous deformation, like a
solid. We find the velocity distribution to be non-Gaussian, anisotropic, and
to follow a power law at large velocities. Remarkably, the distribution is
identical in the fluid-like and solid-like regions. The velocity variance is
maximum at the core, defying predictions of hydrodynamic theories. We show
evidence of spatially correlated motion, and propose a mechanism for the
generation of fluctuational motion in the absence of shear.Comment: Submitted to Phys. Rev. Let
Calibrations of hydro-acoustic instruments onboard FORV Sagar Sampada
Calibration is carried out to keep up the precision of the instruments by
determining their calibre. CaUbration of hydro acoustic equipments onboard FORV
Sagar Sampada was carried out periodically and the performance records were
maintained. Deviation and the deficiencies were noted down for applying the correction
while interpreting the output of the instruments
Nonlinear Modes of Liquid Drops as Solitary Waves
The nolinear hydrodynamic equations of the surface of a liquid drop are shown
to be directly connected to Korteweg de Vries (KdV, MKdV) systems, giving
traveling solutions that are cnoidal waves. They generate multiscale patterns
ranging from small harmonic oscillations (linearized model), to nonlinear
oscillations, up through solitary waves. These non-axis-symmetric localized
shapes are also described by a KdV Hamiltonian system. Recently such ``rotons''
were observed experimentally when the shape oscillations of a droplet became
nonlinear. The results apply to drop-like systems from cluster formation to
stellar models, including hyperdeformed nuclei and fission.Comment: 11 pages RevTex, 1 figure p
A Preliminary Investigation towards the Risk Stratification of Allogeneic Stem Cell Recipients with Respect to the Potential for Development of GVHD via Their Pre-Transplant Plasma Lipid and Metabolic Signature
The clinical outcome of allogeneic hematopoietic stem cell transplantation (SCT) may be influenced by the metabolic status of the recipient following conditioning, which in turn may enable risk stratification with respect to the development of transplant-associated complications such as graft vs. host disease (GVHD). To better understand the impact of the metabolic profile of transplant recipients on post-transplant alloreactivity, we investigated the metabolic signature of 14 patients undergoing myeloablative conditioning followed by either human leukocyte antigen (HLA)-matched related or unrelated donor SCT, or autologous SCT. Blood samples were taken following conditioning and prior to transplant on day 0 and the plasma was comprehensively characterized with respect to its lipidome and metabolome via liquid chromatography/mass spectrometry (LCMS) and gas chromatography/mass spectrometry (GCMS). A pro-inflammatory metabolic profile was observed in patients who eventually developed GVHD. Five potential pre-transplant biomarkers, 2-aminobutyric acid, 1-monopalmitin, diacylglycerols (DG 38:5, DG 38:6), and fatty acid FA 20:1 demonstrated high sensitivity and specificity towards predicting post-transplant GVHD. The resulting predictive model demonstrated an estimated predictive accuracy of risk stratification of 100%, with area under the curve of the ROC of 0.995. The likelihood ratio of 1-monopalmitin (infinity), DG 38:5 (6.0), and DG 38:6 (6.0) also demonstrated that a patient with a positive test result for these biomarkers following conditioning and prior to transplant will be at risk of developing GVHD. Collectively, the data suggest the possibility that pre-transplant metabolic signature may be used for risk stratification of SCT recipients with respect to development of alloreactivity
Measuring the dark matter velocity anisotropy in galaxy clusters
The Universe contains approximately 6 times more dark matter than normal
baryonic matter, and a directly observed fundamental difference between dark
matter and baryons would both be significant for our understanding of dark
matter structures and provide us with information about the basic
characteristics of the dark matter particle. We discuss one distinctive feature
of dark matter structures in equilibrium, namely the property that a local dark
matter temperature may depend on direction. This is in stark contrast to
baryonic gases. We used X-ray observations of two nearby, relaxed galaxy
clusters, under the assumptions of hydrostatic equilibrium and identical dark
matter and gas temperatures in the outer cluster region, to measure this dark
matter temperature anisotropy beta_dm, with non-parametric Monte Carlo methods.
We find that beta_dm is greater than the value predicted for baryonic gases,
beta_gas=0, at more than 3 sigma confidence. The observed value of the
temperature anisotropy is in fair agreement with the results of cosmological
N-body simulations and shows that the equilibration of the dark matter
particles is not governed by local point-like interactions in contrast to
baryonic gases.Comment: 5 pages, 3 figures, extended discussions, matches accepted versio
Analytic models of plausible gravitational lens potentials
Gravitational lenses on galaxy scales are plausibly modelled as having
ellipsoidal symmetry and a universal dark matter density profile, with a Sersic
profile to describe the distribution of baryonic matter. Predicting all lensing
effects requires knowledge of the total lens potential: in this work we give
analytic forms for that of the above hybrid model. Emphasising that complex
lens potentials can be constructed from simpler components in linear
combination, we provide a recipe for attaining elliptical symmetry in either
projected mass or lens potential. We also provide analytic formulae for the
lens potentials of Sersic profiles for integer and half-integer index. We then
present formulae describing the gravitational lensing effects due to
smoothly-truncated universal density profiles in cold dark matter model. For
our isolated haloes the density profile falls off as radius to the minus fifth
or seventh power beyond the tidal radius, functional forms that allow all
orders of lens potential derivatives to be calculated analytically, while
ensuring a non-divergent total mass. We show how the observables predicted by
this profile differ from that of the original infinite-mass NFW profile.
Expressions for the gravitational flexion are highlighted. We show how
decreasing the tidal radius allows stripped haloes to be modelled, providing a
framework for a fuller investigation of dark matter substructure in galaxies
and clusters. Finally we remark on the need for finite mass halo profiles when
doing cosmological ray-tracing simulations, and the need for readily-calculable
higher order derivatives of the lens potential when studying catastrophes in
strong lenses.Comment: 24 pages, 10 figures, matches published versio
- …