817 research outputs found

    On particle acceleration and trapping by Poynting flux dominated flows

    Full text link
    Using particle-in-cell (PIC) simulations, we study the evolution of a strongly magnetized plasma slab propagating into a finite density ambient medium. Like previous work, we find that the slab breaks into discrete magnetic pulses. The subsequent evolution is consistent with diamagnetic relativistic pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the actual electron to proton mass ratio and focus on understanding trapping vs. transmission of the ambient plasma by the pulses and on the particle acceleration spectra. We find that the accelerated electron distribution internal to the slab develops a double-power law. We predict that emission from reflected/trapped external electrons will peak after that of the internal electrons. We also find that the thin discrete pulses trap ambient electrons but allow protons to pass through, resulting in less drag on the pulse than in the case of trapping of both species. Poynting flux dominated scenarios have been proposed as the driver of relativistic outflows and particle acceleration in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio

    Development of an Interpretive Simulation Tool for the Proton Radiography Technique

    Get PDF
    Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from PIC or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field `primitives' is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼108\sim 10^8 particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10\sim10 mm3^3. Insights derived from this application show that the tool can support understanding of HED plasmas.Comment: Figures and tables related to the Appendix are included in the published journal articl

    Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight

    Get PDF
    Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion collection to provide a quantitative assessment of the effects of microgravity on a model organism. We developed robust hardware to screen, in parallel, the complete collection of ~4800 homozygous and ~5900 heterozygous (including ~1100 single-copy deletions of essential genes) yeast deletion strains, each carrying unique DNA that acts as strain identifiers. We compared strain fitness for the homozygous and heterozygous yeast deletion collections grown in spaceflight and ground, as well as plus and minus hyperosmolar sodium chloride, providing a second additive stressor. The genome-wide sensitivity profiles obtained from these treatments were then queried for their similarity to a compendium of drugs whose effects on the yeast collection have been previously reported. We found that the effects of spaceflight have high concordance with the effects of DNA-damaging agents and changes in redox state, suggesting mechanisms by which spaceflight may negatively affect cell fitness

    Microwave-induced control of Free Electron Laser radiation

    Full text link
    The dynamical response of a relativistic bunch of electrons injected in a planar magnetic undulator and interacting with a counterpropagating electromagnetic wave is studied. We demonstrate a resonance condition for which the free electron laser (FEL) dynamics is strongly influenced by the presence of the external field. It opens up the possibility of control of short wavelength FEL emission characteristics by changing the parameters of the microwave field without requiring change in the undulator's geometry or configuration. Numerical examples, assuming realistic parameter values analogous to those of the TTF-FEL, currently under development at DESY, are given for possible control of the amplitude or the polarization of the emitted radiation.Comment: 14 pages, 5 figures, accepted for publication in Phys. Rev.

    A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction

    Full text link
    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states, and to reproduce their intermediate states and time evolution.Comment: Accepted by PO

    Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide

    Get PDF
    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-12-1-0489

    Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field

    Full text link
    We have performed numerical simulations on a pure electron plasma system under a strong magnetic field, in order to examine quasi-stationary states that the system eventually evolves into. We use ring states as the initial states, changing the width, and find that the system evolves into a vortex crystal state from a thinner-ring state while a state with a single-peaked density distribution is obtained from a thicker-ring initial state. For those quasi-stationary states, density distribution and macroscopic observables are defined on the basis of a coarse-grained density field. We compare our results with experiments and some statistical theories, which include the Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and the minimum enstrophy state. From some of those initial states, we obtain the quasi-stationary states which are close to the minimum enstrophy state, but we also find that the quasi-stationary states depend upon initial states, even if the initial states have the same energy and angular momentum, which means the ergodicity does not hold.Comment: 9 pages, 7 figure

    Spinodal Decomposition in Binary Gases

    Full text link
    We carried out three-dimensional simulations, with about 1.4 million particles, of phase segregation in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving Boltzmann-Vlasov equations. Using a combination of Direct Simulation Monte Carlo(DSMC) for the short range collisions and a version of Particle-In-Cell(PIC) evolution for the smooth long range interaction, we found dynamical scaling after the ratio of the interface thickness(whose shape is described approximately by a hyperbolic tangent profile) to the domain size is less than ~0.1. The scaling length R(t) grows at late times like t^alpha, with alpha=1 for critical quenches and alpha=1/3 for off-critical ones. We also measured the variation of temperature, total particle density and hydrodynamic velocity during the segregation process.Comment: 11 pages, Revtex, 4 Postscript figures, submitted to PR

    A Monte Carlo simulation of ion transport at finite temperatures

    Full text link
    We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. A special attention has been paid to properly treat the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulas for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The developed techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+^+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics.Comment: 14 page
    • …
    corecore