251 research outputs found

    First-principles modelling for time-resolved ARPES under different pump–probe conditions

    Get PDF
    First-principles methods for time-resolved angular resolved photoelectron spectroscopy play a pivotal role in providing interpretation and microscopic understanding of the complex experimental data and in exploring novel observables or observation conditions that may be achieved in future experiments. Here we describe an efficient, reliable and scalable first-principles method for tr-ARPES based on time-dependent density functional theory including propagation and surface effects usually discarded in the widely used many-body techniques based on computing the non-equilibrium spectral function and discuss its application to a variety of pump–probe conditions. We identify four conditions, depending on the length of the probe relative to the excitation in the materials on the one hand and on the overlap between pump and probe on the other hand. Within this paradigm different examples of observables of time-resolved ARPES are discussed in view of the newly developed and highly accurate time-resolved experimental spectroscopies

    Floquet engineering the band structure of materials with optimal control theory

    Get PDF
    We demonstrate that the electronic structure of a material can be deformed into Floquet pseudobands with arbitrarily tailored shapes. We achieve this goal with a combination of quantum optimal control theory and Floquet engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-electron tight-binding description of the π electronic system of graphene. We show several prototype examples focusing on the region around the K (Dirac) point of the Brillouin zone: creation of a gap with opposing flat valence and conduction bands, creation of a gap with opposing concave symmetric valence and conduction bands (which would correspond to a material with an effective negative electron-hole mass), and closure of the gap when departing from a modified graphene model with a nonzero field-free gap. We employ time-periodic drives with several frequency components and polarizations, in contrast to the usual monochromatic fields, and use control theory to find the amplitudes of each component that optimize the shape of the bands as desired. In addition, we use quantum control methods to find realistic switch-on pulses that bring the material into the predefined stationary Floquet band structure, i.e., into a state in which the desired Floquet modes of the target bands are fully occupied, so that they should remain stroboscopically stationary, with long lifetimes, when the weak periodic drives are started. Finally, we note that although we have focused on solid state materials, the technique that we propose could be equally used for the Floquet engineering of ultracold atoms in optical lattices and for other nonequilibrium dynamical and correlated systems

    Floquet states in dissipative open quantum systems

    Full text link
    We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that the Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant dissipation when the decoherence time is substantially shorter than the cycle of driving, once the driving field strength becomes strong enough. In an off-resonant condition, we demonstrate that the Floquet states can be realized even in weak field regimes because the system is not excited and the decoherence mechanism is not activated. Once the field strength becomes strong enough, the system can be excited by nonlinear processes and the decoherence process becomes active. As a result, the Floquet states are significantly disturbed by the environment even in the off-resonant condition. Thus, we show here that the suppression of heating is a key condition for the realization of Floquet states in both on and off-resonant conditions not only because it prevents material damage but also because it contributes to preserving coherence

    Quantum paraelectric phase of SrTiO<sub>3</sub> from first principles

    Get PDF
    We demonstrate how the quantum paraelectric ground state of SrTiO3 can be accessed via a microscopic ab initio approach based on density functional theory. At low temperature the quantum fluctuations are strong enough to stabilize the paraelectric phase even though a classical description would predict a ferroelectric phase. We find that accounting for quantum fluctuations of the lattice and for the strong coupling between the ferroelectric soft mode and lattice elongation is necessary to achieve quantitative agreement with experimental frequency of the ferroelectric soft mode. The temperature dependent properties in SrTiO3 are also well captured by the present microscopic framework

    Microscopic theory for the light-induced anomalous Hall effect in graphene

    Full text link
    We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties

    A time-based Chern number in periodically-driven systems in the adiabatic limit

    Get PDF
    To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic 2D Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via how the parametric variable evolves in its own space. We justify our claims by investigating Thouless pumping in two 1D tight-binding models, a three-site chain model and a two-1D-sliding-chains model. The present findings could be extended to higher dimensions and other periodically driven configurations

    Common microscopic origin of the phase transitions in Ta<sub>2</sub>NiS<sub>5</sub> and the excitonic insulator candidate Ta<sub>2</sub>NiSe<sub>5</sub>

    Get PDF
    The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta2NiS5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5 and Ta2NiS5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta2NiSe5 and Ta2NiS5

    Time- and angle-resolved photoelectron spectroscopy of strong-field light-dressed solids: Prevalence of the adiabatic band picture

    Get PDF
    In recent years, strong-field physics in condensed matter was pioneered as a potential approach for controlling material properties through laser dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g., harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band picture should be used to interpret strong-field experiments: The field-free bands, the adiabatic (instantaneous) field-dressed bands, Floquet bands, or some other intermediate picture. Here, we try to resolve this issue by performing theoretical experiments of time- and angle-resolved photoelectron spectroscopy (Tr-ARPES) for a strong-field laser-pumped solid, which should give access to the actual observable bands of the irradiated material. To our surprise, we find that the adiabatic band picture survives quite well up to high field intensities (∼1012W/cm2) and in a wide frequency range (driving wavelengths of 4000 to 800 nm, with Keldysh parameters ranging up to ∼7). We conclude that, to first order, the adiabatic instantaneous bands should be the standard blueprint for interpreting ultrafast electron dynamics in solids when the field is highly off resonant with characteristic energy scales of the material. We then discuss weaker effects of modifications of the bands beyond this picture that are nonadiabatic, showing that by using bichromatic fields the deviations from the standard picture can be probed with enhanced sensitivity. In this paper, we outline a clear band picture for the physics of strong-field interactions in solids, which should be useful for designing and analyzing strong-field experimental observables and to formulate simpler semi-empirical models
    • …
    corecore