1,282 research outputs found

    Effect of Point Defects on the Optical and Transport Properties of MoS2 and WS2

    Get PDF
    Imperfections in the crystal structure, such as point defects, can strongly modify the optical and transport properties of materials. Here, we study the effect of point defects on the optical and DC conductivities of single layers of semiconducting transition metal dichalcogenides with the form MMS2_2, where MM=Mo or W. The electronic structure is considered within a six bands tight-binding model, which accounts for the relevant combination of dd orbitals of the metal MM and pp orbitals of the chalcogen SS. We use the Kubo formula for the calculation of the conductivity in samples with different distributions of disorder. We find that MM and/or S defects create mid-gap states that localize charge carriers around the defects and which modify the optical and transport properties of the material, in agreement with recent experiments. Furthermore, our results indicate a much higher mobility for pp-doped WS2_2 in comparison to MoS2_2

    Fixed Points of the Dissipative Hofstadter Model

    Full text link
    The phase diagram of a dissipative particle in a periodic potential and a magnetic field is studied in the weak barrier limit and in the tight-biding regime. For the case of half flux per plaquette, and for a wide range of values of the dissipation, the physics of the model is determined by a non trivial fixed point. A combination of exact and variational results is used to characterize this fixed point. Finally, it is also argued that there is an intermediate energy scale that separates the weak coupling physics from the tight-binding solution.Comment: 4 pages 3 figure

    Pseudomagnetic fields and ballistic transport in a suspended graphene sheet

    Get PDF
    We study a suspended graphene sheet subject to the electric field of a gate underneath. We compute the elastic deformation of the sheet and the corresponding effective gauge field, which modifies the electronic transport. In a clean system the two-terminal conductance of the sample is reduced below the ballistic limit and is almost totally suppressed at low carrier concentrations in samples under tension. Residual disorder restores a small finite conductivity.Comment: 4 page

    Topological superconductivity in lead nanowires

    Full text link
    Superconductors with an odd number of bands crossing the Fermi energy have topologically protected Andreev states at interfaces, including Majorana states in one dimensional geometries. Superconductivity, a low number of 1D channels, large spin orbit coupling, and a sizeable Zeeman energy, are present in lead nanowires produced by nanoindentation of a Pb tip on a Pb substrate, in magnetic fields higher than the Pb bulk critical field. A number of such devices have been analyzed. In some of them, the dependence of the critical current on magnetic field, and the Multiple Andreev Reflections observed at finite voltages, are compatible with the existence of topological superconductivity
    • …
    corecore