11 research outputs found

    Precipitation and temperature extremes and association with large-scale climate indices: An observational evidence over India

    Get PDF
    Climate change exposes more frequent natural hazards and physical vulnerabilities to the built and natural environments. Extreme precipitation and temperature events will have a significant impact on both the natural environment and human society. However, it is unclear whether precipitation and temperature extremes increase physical vulnerabilities across scales and their links with large-scale climate indices. This study investigates the relationship between precipitation and temperature extremes, as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), and large scale climatological phenomenon indices (Indian Summer Monsoon Index (ISMI), Arctic Oscillation (AO), and North Atlantic Oscillation (NAO)), using India as a case study. Our findings show that extreme warm indices were primarily negatively related to ISMI and positively related to extreme cold indices. According to Pearson’s correlation coefficients and Wavelet Transform Coherence (WTC), extreme warm indices were negatively related to ISMI and positively related to extreme cold indices. The extreme precipitation indices had a significant positive relationship, primarily with AO. Furthermore, from 1951 to 2018, India experienced an increase in warm extremes over western, central, and peninsular India, while cold indices increased over northwest India. Precipitation extremes of more than one day, more than one days, very wet and extremely wet days have increased across India except in the Indo-Gangetic plains, while heavy and very heavy precipitation days, consecutive wet days, and consecutive dry days have decreased

    Validation of the COSMIC Radio Occultation Data over Gadanki (13.48°N, 79.2°E): A Tropical Region

    Full text link
    Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), consisting of six Low Earth Orbit (LEO) Global Position System (GPS) receivers, on board the Formosat Satellite 3 (FORMOSAT-3) is providing dense observations of density, refractivity, temperature and water vapor profiles of the neutral atmosphere since middle of July 2006. Special radiosonde (Väisälä) campaign was conducted at Gadanki (13.48°N, 79.18°E), a tropical site in India, during July 2006 to March 2007 to validate these meteorological parameters. Co-located Nd: YAG Rayleigh lidar was also operated during the overpass of COSMIC and is utilized to validate the temperatures in the height range of 30 to 40 km. Atotal of 142 overpasses occurred during the above mentioned period within 300 km distance from Gadanki out of which 41 overpasses occurred within a time difference of ±4 hours of radiosonde launch. In addition, 18 overpasses occurred within the time difference of ±4 hours of lidar operation. A detailed comparison has been made with all these overpasses for the refractivity, temperature and water vapor obtained from COSMIC. The water vapor comparison has shown generally a good agreement with a mean difference of 5 - 10% below 6 - 7 km. Although there is a colder bias between COSMIC and radiosonde, a very good comparison in temperature is also found between 10 and 27 km with a mean difference of less than 1 K (RMS difference is only 0.64 K). There exists a large difference in temperature of about 8 K between 30 and 40 km (between COSMIC and lidar). Possible reasons for these large differences are given. There was one event that occurred just over Gadanki for which a detailed comparison has been made with special emphasis on water vapor retrievals. Sensitivity test is also done on the fractional difference in N for the event that occurred on 24 July 2006 between COSMIC (1D-var) and radiosonde and found that pressure plays a key role than temperature in determining the refractivity

    Lower and middle atmospheric responses to the 22 July 2009 total solar eclipse

    No full text
    91-102In the present study, the effect of total solar eclipse, occurred on 22 July 2009, on water vapour in the troposphere, refractivity and temperature in the troposphere and the stratosphere using the observations available from COSMIC GPS RO, is reported. The investigation is extended to the entire middle atmosphere using SABER aboard TIMED satellite to study the response in the temperature and ozone. A significant enhancement in the water vapour and the refractivity in the lower and middle troposphere are noticed on the eclipse day when compared to non-eclipse days. Using the GPS RO observations, it is also found that the temperature responds differently at different altitudes, i.e. cooling in the troposphere and warming in the stratosphere. Similar features in temperature are also noticed in SABER observations below 40 km. Above 40 km altitude, cooling is observed up to an altitude of 70 km, therein again warming is noticed. An increase in ozone concentration is found throughout the middle atmosphere except near 30 km. Tropopause altitude is also observed to vary significantly during the solar eclipse with decrease (increase) in the altitude (temperature) of about 1-1.5 km (3-5 K). Large perturbations in the temperature, due to gravity waves in the stratosphere and the mesosphere, are noticed on the eclipse day and found westward propagating as expected. For the first time, evidences of solar eclipse in the entire lower and middle atmosphere is presented using ground based and satellite borne observations. </span

    Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere (UTLS) Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements

    No full text
    It is well reported that the 2015&#8211;16 El Ni&#241;o event is one of the most intense and long lasting events in the 21st century. The quantified changes in the trace gases (Ozone (O3), Carbon Monoxide (CO) and Water Vapour (WV)) in the tropical upper troposphere and lower stratosphere (UTLS) region are delineated using Aura Microwave Limb Sounder (MLS) and Atmosphere Infrared Radio Sounder (AIRS) satellite observations from June to December 2015. Prior to reaching its peak intensity of El Ni&#241;o 2015&#8211;16, large anomalies in the trace gases (O3 and CO) were detected in the tropical UTLS region, which is a record high in the 21st century. A strong decrease in the UTLS (at 100 and 82 hPa) ozone (~200 ppbv) in July-August 2015 was noticed over the entire equatorial region followed by large enhancement in the CO (150 ppbv) from September to November 2015. The enhancement in the CO is more prevalent over the South East Asia (SEA) and Western Pacific (WP) regions where large anomalies of WV in the lower stratosphere are observed in December 2015. Dominant positive cold point tropopause temperature (CPT-T) anomalies (~5 K) are also noticed over the SEA and WP regions from the high-resolution Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Position System (GPS) Radio Occultation (RO) temperature profiles. These observed anomalies are explained in the light of dynamics and circulation changes during El Ni&#241;o

    Soil Moisture Variability in India: Relationship of Land Surface–Atmosphere Fields Using Maximum Covariance Analysis

    No full text
    This study investigates the spatial and temporal variability of the soil moisture in India using Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) gridded datasets from June 2002 to April 2017. Significant relationships between soil moisture and different land surface&#8315;atmosphere fields (Precipitation, surface air temperature, total cloud cover, and total water storage) were studied, using maximum covariance analysis (MCA) to extract dominant interactions that maximize the covariance between two fields. The first leading mode of MCA explained 56%, 87%, 81%, and 79% of the squared covariance function (SCF) between soil moisture with precipitation (PR), surface air temperature (TEM), total cloud count (TCC), and total water storage (TWS), respectively, with correlation coefficients of 0.65, &#8722;0.72, 0.71, and 0.62. Furthermore, the covariance analysis of total water storage showed contrasting patterns with soil moisture, especially over northwest, northeast, and west coast regions. In addition, the spatial distribution of seasonal and annual trends of soil moisture in India was estimated using a robust regression technique for the very first time. For most regions in India, significant positive trends were noticed in all seasons. Meanwhile, a small negative trend was observed over southern India. The monthly mean value of AMSR soil moisture trend revealed a significant positive trend, at about 0.0158 cm3/cm3 per decade during the period ranging from 2002 to 2017
    corecore