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Climate change exposes more frequent natural hazards and physical vulnerabilities to the built and
natural environments. Extreme precipitation and temperature events will have a significant impact on
both the natural environment and human society. However, it is unclear whether precipitation and
temperature extremes increase physical vulnerabilities across scales and their links with large-scale cli-
mate indices. This study investigates the relationship between precipitation and temperature extremes, as
recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), and large scale
climatological phenomenon indices (Indian Summer Monsoon Index (ISMI), Arctic Oscillation (AO), and
North Atlantic Oscillation (NAO)), using India as a case study. Our Bndings show that extreme warm
indices were primarily negatively related to ISMI and positively related to extreme cold indices.
According to Pearson’s correlation coefBcients and Wavelet Transform Coherence (WTC), extreme warm
indices were negatively related to ISMI and positively related to extreme cold indices. The extreme
precipitation indices had a significant positive relationship, primarily with AO. Furthermore, from 1951
to 2018, India experienced an increase in warm extremes over western, central, and peninsular India,
while cold indices increased over northwest India. Precipitation extremes of more than one day, more
than Bve days, very wet and extremely wet days have increased across India except in the Indo-Gangetic
plains, while heavy and very heavy precipitation days, consecutive wet days, and consecutive dry days
have decreased.

Keywords. ETCCDI; precipitation; temperature; teleconnections; ISMI; AO.

1. Introduction

It has always been an important aspect where
researchers strive to understand how and why
climate extremes have changed in the past. The
increase in precipitation extremes is evident in

most parts of the globe due to an increase in
atmospheric water holding capacity under warm-
ing climate based on both observations and cli-
mate model simulations (Utsumi et al. 2011;
Vinnarasi and Dhanya 2016). Globally, under-
standing past changes in the characteristics of
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extreme climate events, including recent changes
in the intensity of heavy precipitation and tem-
perature extremes, became critical for reliable
projections of future changes (Donat et al. 2013;
Panda et al. 2017; Lin et al. 2017; Vinnarasi et al.
2017).
In recent decades, India experienced several

extreme events such asCoods (Mishra et al. 2015) and
heat waves (Murari et al. 2015; Rohini et al. 2016).
Numerous studies adopted various indices to analyze
and characterize Indianmonsoon rainfall extremes in
terms of intensity, frequency (Rajeevan et al. 2008)
and spell (Dash and Mamgain 2011) based on Bxed
thresholds (Vinnarasi and Dhanya 2016) and statis-
tics (Ghosh et al. 2012). A few studies used percentile
thresholds (Panda et al. 2017) and Bxed thresholds
(Deshpande et al. 2016) at various spatial resolutions
and scales to estimate temperature extremes.Most of
these studies support that climate extremes for India
have changed drastically with various methods and
huge number of indices. However, how best to deBne
the standard climate extreme is debatable (Alexan-
der 2016). Studies related to climate extremes have
progressed enormously over the last few decades all
over the world (Donat et al. 2013; Curry et al. 2014)
due to coordinated international eAorts led by the
Expert Team on Climate Change Detection and
Indices (ETCCDI) (table 1). Over Indian region, few
studies attemptedtoanalyze the trendsof rainfall and
temperature extremes at river basin scales (Chan-
drashekar and Shetty 2018; Das and Nanduri 2018;
Dimri 2019; Khan et al. 2019), and all over India with
modiBed forms of ETCCDI indices (Panda et al.
2016), current and future scenarios of threshold-
based precipitation (R90, R95, R99, R1, R5, R10,
etc.) and temperature (TX90, TX95, TX99, etc.)
(Kumaretal. 2020).For example,Kumaretal. (2020)
used various modiBed forms of ETCCDI indices of
precipitation such as R90, R95, R99, R1, R5, R10,
and temperature indices such as TX90, TX95, TX99.
Roy (2019) used four seasonal extreme temperature
indices (DTR, WSDI, TX90p, SU, TX10p, TN90p,
TR) for a period of 1980–2010 using station-based
observations. Rai et al. (2019) studied spatio-tem-
poral variability of projected precipitation extremes
using four ETCCDI (CDD, CWD, R20mm, R95p)
indices using Coordinated Regional Climate Down-
scaling Experiment-South Asia domain (CORDEX-
SA) data. Most of these studies reported the spatio-
temporal trends of precipitation and temperature
extremes independently. However, none of the stud-
ies have explored the spatio-temporal trends of both
precipitation and temperature indices in terms of

intensity, frequency, anddurations basedon themost
dependable station-based observations in their orig-
inal formulations altogether. Therefore, the current
study aims to investigate the variability of 10 pre-
cipitation and 13 extreme temperature indices
developed by ETCCDI over India using gridded
temperature and precipitation data sets from the
India Meteorological Department (IMD). These
indices are classiBed as intensity indices, absolute
threshold indices, relative threshold indices, duration
indices, and so on (Yang et al. 2018).
Further, we have also investigated the relation

between extreme precipitation and temperature
indices with large scale oscillations (e.g., Southern
Oscillation Index (SOI), PaciBc Decadal Oscilla-
tion (PDO), Dipole Mode Index (DMI), Arctic
Oscillation (AO), North Atlantic Oscillation
(NAO) and Indian Summer Monsoon Index
(ISMI)). Therefore, the speciBc objectives of the
study were to (1) analyze the spatio-temporal
variability of annual precipitation and temperature
extremes over India with the most dependent sta-
tion based on observed historical data; (2) estimate
the possible trends of precipitation and tempera-
ture extremes from 1951 to 2018; (3) explore the
relationships of precipitation and temperature
extremes with large scale climatological phenome-
nal indices, employing wavelet transform
coherence.

2. Methodology

To analyze the spatio-temporal variabilities of
precipitation and temperature extremes, the
annual time-series of each index for a period of
1951–2018 was estimated for each grid point and
analyzed for all over India. To study the spatio-
temporal trends of each precipitation and temper-
ature extremes, we performed Mann–Kendall trend
test to assess the significance of monotonic trends;
Sen’s slope to estimate the magnitude and to
characterize the trend as increasing or decreasing
of a continuous annual time series data for a period
of 1951–2018. To study the relationships of
precipitation and temperature extremes with
large-scale climatological phenomenal indices, we
adapted Pearson’s correlation coefBcients and
Wavelet Transform Coherence measures. The
study considered 10 precipitation and 13 extreme
temperature indices (table 1) in the analysis of
spatio-temporal variability, possible trends and
association with climate indices.
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Table 1. List of expert team for climate change detection monitoring and indices (ETCCDMI) of precipitation and temperature
indices.

ID (unit) Indicator name Definitions Mean (range)

SU25 (days) Summer days Annual count when TX

(daily maximum)[ 258C
323.84

(311.26–336.34)

TR20 (days) Tropical nights Annual count when TN

(daily minimum)[ 208C
196.4 (179.4–219.16)

TXx (�C) Hottest days Monthly maximum value of daily

maximum temp

34.14 (33.27–35.32)

TNx (�C) Warmest nights Monthly maximum value of daily

minimum temp

21.76 (20.95–22.82)

TXn (�C) Coldest days Monthly minimum value of daily

maximum temp

27.3 (26.48–28.50)

TNn (�C) Coldest nights Monthly minimum value of daily minimum

temp

16.12 (15.34–17.1)

TN10p (% days) Cool nights Percentage of days when TN\ 10th

percentile

24.98 (10.12–42.6)

TX10p (% days) Cool days Percentage of days when TX\ 10th

percentile

26.79 (13.23–44.72)

TN90p (% days) Warm nights Percentage of days when TN[ 90th

percentile

34.89 (17.74–55.64)

TX90p (% days) Warm days Percentage of days when TX[ 90th

percentile

35.24 (17.69–55.48)

WSDI (days) Warm spell duration indicator Annual count of days with at least

6 consecutive days when TX[ 90th

percentile

77.93 (29.0–145.6)

CSDI (days) Cold spell duration indicator Annual count of days with at least

6 consecutive days when TN\ 10th

percentile

39.32 (4.5–86.93)

DTR (�C) Diurnal temperature range Monthly mean difference between

TX and TN

12.1 (11.4–12.7)

RX1day (mm) Max 1-day precipitation amount Monthly maximum 1-day precipitation 24.5 (21.18–28.3)

Rx5day (mm) Max 5-day precipitation amount Monthly maximum consecutive 5-day

precipitation

48.3 (41.22–56.7)

SDII (mm/day) Simple daily intensity index Annual total precipitation divided

by the number of wet days (deBned as

PRCP[= 1.0 mm) in the year

13.25 (12.04–14.32)

R10mm (days) Number of heavy precipitation days Annual count of days when

PRCP[= 10 mm

32.58 (26.38–39.21)

R20mm (days) Number of very heavy precipitation

days

Annual count of days when

PRCP[= 20 mm

16.89 (13.6–20.76)

CDD (days) Consecutive dry days Maximum number of consecutive days

with RR\ 1 mm

77.83 (53.22–98.19)

CWD (days) Consecutive wet days Maximum number of consecutive days

with RR[= 1 mm

13.76 (10.6–16.7)

R95p (mm) Very wet days Annual total PRCP when RR[ 95th

percentile

402.8 (269.4–561.38)

R99p (mm) Extremely wet days Annual total PRCP when RR[ 99th

percentile

333.68 (233.9–467.6)

PRCPTOT (mm) Annual total wet-day precipitation Annual total PRCP in wet days

(RR[= 1 mm)

1125.00

(909.98–1344.9)
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2.1 Spatio-temporal variabilities of precipitation
and temperature extremes

The annual precipitation and temperature extreme
time-series estimated for each cell for a period of
1951–2018 was used to study the spatial distribu-
tion of extremes all over India. Furthermore, such
annual time series of precipitation and temperature
extremes were used to estimate the spatial aver-
ages covering all valid cells within India to study
the temporal variability of each extreme index for a
long observational data from 1951 to 2018. Using
both precipitation and temperature extremes of
each index at annual scales, the study reported
spatio-temporal variability for all over India with
the most dependable and long time period observed
station-based data.

2.2 Spatio-temporal trends analysis
of precipitation and temperature extremes

The significance levels of trends are checked at 5%
significance level and the percentage of grids showing
significant trends for precipitation and temperature
indices all over India are discussed. Non-parametric
Mann–Kendall trend test was applied to detect
monotonic trends in precipitation and temperature
extremes, and the spatially averaged slope of linear
trends is estimated using Sen’s slope method. The
Mann–Kendall trend analysis is a non-parametric
test (Mann 1945; Kendall 1955) to assess if there is
an upward (positive) or downward (negative) trend
of a variable of interest over time for a given signif-
icance level. The test compares the relative magni-
tudes of sample data rather than the data values
themselves (Gilbert 1987). The following procedure
explains the Mann–Kendall trend test:

• The time series, xi, of the variable for which the
trend test to be applied is considered as an
ordered time series.

• Each of the data point, xi, is compared with all
the subsequent data values to estimate the
Mann–Kendall statistic, S, as follows:

Si ¼
Xn

i¼2

Xi�1

j¼1

signðxi � xjÞ; ð1Þ

where

signðxi � xjÞ ¼
1 if xi [ xj
0 if xi ¼ xj
�1 if xi \ xj

8
<

: : ð2Þ

• A very high positive value of S indicates an
increasing trend, and a very low negative value
indicates a decreasing trend.

• From the Mann–Kendall statistic, S, the nor-
malized test statistics, Z, is computed as follows:

Z ¼ S � 1

½VAR Sð Þ�1=2
if S[ 0; ð3Þ

Z ¼ 0; if S ¼ 0; ð4Þ

Z ¼ S þ 1

½VARðSÞ�1=2
; if S\0; ð5Þ

where VAR(S) is the variance of S. According to
Kendall (1955), VAR(S) can be written as follows:

VARðSÞ ¼ 1

18

"
nðn � 1Þð2n þ 5Þ

�
Xg

p¼1

tpðtp � 1Þð2tp þ 5Þ
#
;

ð6Þ

where n is the number of data points, g is the number
of tied groups (a tied group is a set of sample data
having the same value), and tp is the number of data
points in the Pth group. The Z-value follows a
standard normal distribution. For testing the
decreasing or increasing trend, a significance level a is
used. The probability associated with the computed
test statistics, Z-value, is estimated. The trend is
identiBed as decreasing if Z-value is negative and the
computed probability is less than the level of signif-
icance, and the trend is identiBed as increasing if the
Z-value is positive and the computed probability is
less than the level of significance. If the computed
probability is greater than the level of significance,
then there is no trend.
Once the possible trends have been identiBed, it

is important to estimate the magnitude of trend or
change per unit time, Qsen, which can be estab-
lished using a non-parametric method proposed by
Sen (1968) and Hirsch et al. (1982). The magnitude
of the slope or change per unit time, Qsen can be
estimated by considering the slopes of all data pairs
are as follows:

Qsen ¼ Median
Yi � Yj

Xi � Xj

� �
; i ¼ 1; 2; . . .;N ; 8j\i;

ð7Þ

where Yi and Yj are data points at Xi and Xj,
respectively. If there are n values of Xi in the time
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series, then there will be (n(n – 1)/2) slopes esti-
mates. The Sen’s estimator of slope is the median
of these n values of Qsen. The positive and negative
signs of Qsen represent increasing and decreasing
trends, respectively.

2.3 Dependence of precipitation
and temperature extremes
with climatological phenomenal indices:
Wavelet transform coherence (WTC)

The WTC has emerged as new signal analysis
which can combine wavelet transform with cross-
spectrum analysis to measure the covarying rela-
tionships of hydroclimatological variables in recent
years (Irannezhad et al. 2020; Jena et al. 2020). The
wavelet transform coherence (WTC) is employed
to explore the dependency of the large-scale cli-
mate indices and precipitation and temperature
indices over India in the time–frequency domain.
The WTC can combine the wavelet transform and
cross-spectrum analysis to measure the significant
dependency between the climate and precipitation
and temperature extremes. The WTC between
two-time series can represent the localized corre-
lation coefBcient in time–frequency space; follow-
ing Torrence and Compo (1998), WTC can be
deBned as follows:

R2
n sð Þ ¼

S s�1WXY
n ðsÞ

� ��� ��2

S s�1 WX
n sð Þ

�� ��2
� �

� S s�1 WY
n sð Þ

�� ��2
� � ;

ð8Þ

where xn and yn are two-time series, with cross

wavelet transform as WXY = WXWY�, where *
denotes complex conjugation. S denotes a
smoothing operator as follows:

S Wð Þ ¼ Sscale S time Wn sð Þð Þð Þ: ð9Þ

Sscale is smoothing along the wavelet scale axis
and S time as smoothing over time. A suitable
wavelet for this purpose can be Morlet wavelet
with smoothing operator, following Torrence and
Compo (1998) as follows:

S timeðW Þjs ¼ Wn sð Þ � c
�t2

2s2

1

	 
����
s

;

S timeðW Þjs ¼ Wn sð Þ � c2
Y

0:6sð Þ
� ����

n
:

ð10Þ

c1 and c2 are normalized constants and the factor
0.6 is empirically determined scale decorrelation

length for the Morlet wavelet. To measure the
statistical dependency between various climate
indices and precipitation and temperature extreme
indices, this study used Pearson’s correlation
coefBcient (r). The statistically significant
(p\ 0.05) Pearson’s correlation coefBcients were
estimated and considered as a reference to study
the dependence analysis using WTC. The initial
dependency analysis between various precipitation,
temperature extremes and large-scale climatologi-
cal indices (teleconnections) was carried out based
on Pearson’s correlation coefBcients. However, to
know the localized correlation coefBcients and their
evolution over a continuous time–frequency space,
and to identify the interaction between the selected
combinations of extremes based on the Pearson’s
correlation coefBcients, we performed WTC
analysis.

3. Data

3.1 Data sources and quality controls

The present study tried to use a high resolution
(0.25� 9 0.25�) daily rainfall data prepared by
India Meteorological Department (IMD) for the
period of 1951–2018 for a spatial domain of 6.5�–
38.5oN and 66.5�–100oE, covering mainland region
of India. The daily rainfall records are generated
from 6955 rain gauge stations with varying avail-
ability and the density of the stations is relatively
high in the southern peninsula and relatively low
over northernmost areas of the country, i.e.,
northwest India, northeast India, and eastern parts
of central India (Pai et al. 2014). The daily maxi-
mum and minimum temperature data set at 1�91o

resolution for the period of 1951–2018 from India
Meteorological Department (IMD) are used in the
present study. The maximum and minimum tem-
perature data sets are brought to a common reso-
lution of 0.25�90.25� at precipitation gridded data
set by using bilinear interpolation without com-
promising the spatial variability of the data sets. A
total of 4964 grids all over India are considered to
study the precipitation and temperature extreme
indices.
To identify the relation between tempera-

ture/precipitation indices with large scale telecon-
nections, we have chosen the Southern Oscillation
Index (SOI), PaciBc Decadal Oscillation (PDO),
Dipole Mode Index (DMI), Arctic Oscillation
(AO), North Atlantic Oscillation (NAO), Indian
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Summer Monsoon Index (ISMI) for a period of
1951–2018. The Southern Oscillation Index (SOI)
can be obtained from http://www.bom.gov.au/
climate/current/soihtm1.shtml, which represents
the observed surface air pressure difference
between western (Tahiti) and eastern tropical
PaciBc (Darwin, Australia) during El Niño and La
Niña episodes. The PaciBc Decadal Oscillation
(PDO) can be downloaded from https://www.
ncdc.noaa.gov/teleconnections/pdo/data, which
represents long-lived El Niño like pattern of PaciBc
climate variability. The Dipole Mode Index (DMI)
data can be downloaded from http://www.jamstec.
go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.
txt. The DMI is the difference in sea surface tem-
perature (SST) between the western and eastern
equatorial Indian Ocean. The Arctic Oscillation
(AO) represents the Northern hemisphere annular
mode and can be obtained from https://www.ncdc.
noaa.gov/teleconnections/ao/data.json. The North
Atlantic Oscillation (NAO) index is a major model
of variability, referring to the sea pressure differ-
ence between sub-tropical high surface pressure
and sub-polar low surface pressures, centered on
Iceland, obtained from https://crudata.uea.ac.uk/
cru/data/nao/. The Indian Summer Monsoon
Index (ISMI) is deBned as the averaged total
rainfall during the monsoon period of June–
September (JJAS) over the Indian subcontinent,
which can be obtained from http://apdrc.soest.
hawaii.edu/projects/monsoon/seasonal-monidx.
html. All these indices are extracted at monthly
time scale for a period of 1951–2018.

4. Extreme precipitation and temperature
indices

The precipitation and temperature extreme indices
adopted in the analysis have been based on the
Expert Team on Climate Change Detection and
Indices (ETCCDI), which is a joint group of the
World Metrological Organization (WMO) Com-
mission for Climatology (CCI), the World Climate
Research Programme (WCRP) and the Joint
Commission for Ocean Monitoring (JCOMM)
(https://www.wcrp-climate.org/etccdi), with a
suite of 23 indices derived from daily precipitation,
maximum and minimum temperatures as repre-
sented in table 1. These indices are widely used in
several assessment studies, representing the more
extreme ends of the probability distributions and
the changes in intensity, frequency and duration

(Zhang et al. 2011). Totally 10 precipitation and 13
temperature indices are proposed by ETCCDI. The
CCI-CLIVAR Expert Team for Climate Change
Detection and Indices (ETCCDI) made eAorts to
estimate extreme climate indices based on daily
temperature and precipitation data. There are
about 16 temperature extreme indices which can be
broadly classiBed as threshold-based indices (FD0,
SU25, ID0, TR20, GSL, TN10p, TX10p, TN90p,
TX90p), intensity-based indices (TXx, TNx, TXn,
TNn, DTR), and duration-based indices (WSDI,
CSDI) (refer to table 1). All these extreme tem-
perature indices have its significance related to
crop yield, heat waves and water resources man-
agement. Warm Spell Duration Index (WSDI),
which is deBned as annual count of days with at
least six consecutive days when TX[ 90th per-
centile (table 1), was considered as a proxy for the
duration of heat waves over India (Yaduvanshi
et al. 2021). The temperature indices such as GSL
(growing season length), FD (number of frost
days), and ID (number of icing days) have shown
non-significant trends, and these indices are not
suitable indices for Indian weather (Vinnarasi et al.
2017). The present study considered about 13
threshold-based (SU25, TR20, TN10p, TX10p,
TN90p, TX90p), intensity-based (TXx, TNx, TXn,
TNn, DTR), and duration-based (WSDI, CSDI)
extreme indices to study the spatio-temporal
variability of temperature extremes all over India
(table 1). The 13 temperature extremes were esti-
mated for all over India for the period 1951–2018
and analysed for the spatio-temporal annual aver-
age variability.
Major precipitation indices which are used to

measure the frequency of extreme precipitation
events, not the actual amount of precipitation
events, are consecutive dry days (CDD), consecu-
tive wet days (CWD), number of very heavy pre-
cipitation days (R20mm), and very wet days
(R95p) (Rai et al. 2019). Significant changes in
extreme precipitation events such as monthly
maximum 1-day and 5-day precipitation events
such as RX1day and RX5day, respectively, very
wet days (annual total precipitation, when rain-
fall [95th percentile) R95p, extremely wet days
(annual total precipitation when rainfall [ 99th
percentile) R99p and annual total wet-day precip-
itation (annual total precipitation in wet days,
rainfall[ 1 mm). PRCPTOT would have an
impact on agricultural production, Cash Cooding
and ecosystems (Yaduvanshi et al. 2021). The
present study considered 10 intensity-based
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precipitation extreme indices (annual total wet day
precipitation (PRCPTOT), max-1day precipita-
tion amount (RX1day), and max-5day precipita-
tion amount (RX5day)), threshold-based
precipitation extreme indices (extremely wet days
(R99p) and very wet days (R95p)), duration based
precipitation extreme indices (consecutive wet
days (CWD) and consecutive dry days (CDD)),
and frequency-based precipitation extreme indices
(Simple Daily Intensity Index (SDII), heavy
(R10mm) and very heavy (R20mm) precipitation
days) to study the spatio-temporal variability of
precipitation extremes all over India (table 1). The
10 precipitation extremes were estimated for all
over India for the period of 1951–2018 and analysed
for the spatio-temporal annual average variability.

5. Results and discussion

5.1 Spatial variation of precipitation
and temperature extremes over India

The annual spatial average of precipitation and
temperature extreme indices estimated over a
period of 1951–2018 is shown in Bgures 1 and 2,
respectively. As discussed in the previous section,
we have utilized the 10 precipitation extreme
indices. Both the max-1day and max-5day precip-
itation amounts show similar spatial variability
with higher magnitudes over the Western Ghats,
north, central and East Coast, northeast parts of
India, whereas lower magnitudes are observed over
few parts of peninsular India and northwestern
parts. The max-1day (max-5day) precipitation
amounts have been found to be in the range of
21.18–28.3 mm (41.22–56.7 mm) with a spatial
average value estimated as 24.5 mm (48.3 mm) for
the period of 1951–2018 (table 1). The threshold-
based precipitation indices such as very wet days
(R95p) and extremely wet days (R99p) depict
higher magnitudes over most of the country, except
over northwestern. The annual total wet-day pre-
cipitation (PRCPTOT) amounts are found to be in
the range of *909.98–1344.9 mm with extremely
high magnitudes over northeastern zone, central
India and Western Ghats. Frequency-based pre-
cipitation indices (SDII, R10mm and R20mm)
have higher magnitudes over Western Ghats and
northeastern region of the country, with moderate
magnitudes for the rest of the country (Bgure 1).
The annual spatial variability of SDII was noted in
the range of *12.04 to *14.32 mm with higher

magnitudes towards northwestern and Western
Ghats, few parts of central and northeast India
along with moderate values over the peninsular
India. The spatial average of SDII estimated for all
over India is *13.25 mm. The spatial distribution
of the number of heavy precipitation days
(R10mm) is about *39 days over Western Ghats
and East Coast and northeast with lower magni-
tudes of about *26 days over western parts of the
country. Whereas, another frequency-based pre-
cipitation extreme index of R20mm, number of
very heavy precipitation days, has higher magni-
tudes over Western Ghats and northeast parts of
the country with an average *17 days in terms of
spatial distribution (table 1). Similar values are
also reported over Western Ghats by Rai et al.
(2019). The duration-based precipitation extreme
index of consecutive dry days (CDD) has higher
magnitudes over western, central and southern
India of about*98 days. The overall range of CDD
was noted in the range of *53–98 days with an
average spatial distribution over India as *79
days. Whereas, another duration-based precipita-
tion index of consecutive wet days (CWD) has
followed the pattern of frequency-based precipita-
tion indices of heavy and very heavy precipitation
indices with higher magnitudes over Western
Ghats and northeastern zone. Overall, all wet
precipitation extreme indices have been found to
be more intense over Western Ghats and north-
eastern parts of India while intense dry indices
prevail over the country’s northern and western
regions.
The spatial annual average values of tempera-

ture extreme indices were estimated over 68 years
(1951–2018) from IMD gridded data, as illustrated
in Bgure 2. Higher magnitudes of summer days
(SU25) were estimated as about 336 days over
southern part of India and with moderate magni-
tude all over the country, with spatial average of
about *324 days (Bgure 2a, table 1). The highest
magnitudes of tropical nights (TR20) are found
over the peninsular and central India and moderate
magnitudes over the rest of the country with a
spatial average of about *196 days all over India.
The highest magnitude of hottest days (TXx) was
observed over the country’s central and western
regions (35.32�C). Higher magnitudes of the
warmest nights (TNx) are found over the east and
west coasts of the country, with a magnitude of
22.82�C (Bgure 2b and c). The coldest days (TXn)
are found to be more pounced over major parts of
the country, with minimum magnitudes over
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northeastern and Himalayan regions in the range of
*26.48–28.50�C. The spatial variability of coldest
nights (TNn) is observed over southern parts (with

higher magnitude) and over northern India (with
lower magnitudes) in the range of *15.34–17.1�C
(Bgure 2e, table 1). The percentage of cool nights

Figure 1. Annual average precipitation indices over India estimated for a period of 1951–2018. Precipitation indices: annual total
wet day precipitation days (PRCPTOT), Simple Daily Intensity Index (SDII), max-1-day precipitation amount (RX1day), max-
5-day precipitation amount (RX5day), extremely wet days (R99p), very wet days (R95p), heavy precipitation days (R10mm),
very heavy precipitation days (R20mm), consecutive dry days (CDD), and consecutive wet days (CWD).

Figure 2. Annual average of extreme temperature indices over India estimated for 1951–2018. The extreme indices considered are
summer days (SU25), hottest days (TXx), warmest nights (TNx), coldest days (TXn), coldest nights (TNn), percentage of cool nights
(TN10p), percentage of warm nights (TN90p), warm spell duration indicator (WSDI), cold spell duration indicator (CSDI), daily
temperature range (DTR), percentage of cool days (TX10p), percentage of warm days (TX90p), and tropical nights (TR20).
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(TN10p) and warm nights (TN90p) shows similar
spatial variability with highest magnitudes over
southern and lower magnitudes over northern
parts of India (Bgure 2f and g). The range of TN10p
and TN90p were estimated as *10.12 to *42.6�C
and *17.74 to *55.64�C throughout India. The
duration-based temperature indices of warm spell
duration index (WSDI) were found to be in the
range of 29–146 days with spatial variability of
higher magnitudes over few parts of peninsular,
central, and northwestern parts of India, with
lower magnitudes over northeastern and Hima-
layan states (Bgure 2h). The cold spell duration
index (CSDI) was found to be between *4.5 and
*87 days. The spatial distribution of higher
magnitudes over central and northwestern parts of
the country with lower magnitudes over few parts
of southern states of Tamil Nadu, Kerala, and over
northeastern states with spatial average value of
39.33 days (Bgure 2i). The daily temperature range
(DTR) was found in the range of *11.4 to
*12.7�C, having higher magnitudes over central
and northwestern states of the country, with spa-
tial average values estimated as *12.1�C as shown
in Bgure 2(j) (table 1). Overall, the warm and cold
temperature indices are prevailing moderately over
most of the country, with higher magnitudes over
northwestern and central parts of India, except
over Himalayan states.

5.2 Spatio-temporal trends of precipitation
and temperature extremes over India

The spatial distribution and spatially averaged
temporal trends of extreme precipitation indices
over India are shown in Bgures 3 and 4, respec-
tively. The simple daily intensity index (SDII)
(annual total precipitation/number of wet days)
shows a significant increase over East Coast and
western part of India. While there are significant
negative trends in the northern zone, particularly
in Uttar Pradesh, Uttarakhand, Delhi, and Hima-
chal Pradesh (Bgure 3b). The spatial distribution
of RX1day and RX5day extremes showed positive
trends across most of the country, with the
exception of northeastern and hilly Himalayan
regions (Bgure 3c and d). The spatial trend shows
that all over India CDD index has shown positive
magnitude of slopes all over India with higher
magnitudes over central India (Bgure 3i). The very
heavy precipitation days (R20mm), heavy precip-
itation days (R10mm) and consecutive dry days

(CDD) do not show significant changes. The
annual total wet day precipitation (PRCPTOT)
and very wet precipitation amounts have shown
more pronounced decreasing magnitude of trends
over north India (Bgure 3a).
The spatial averaged annual extreme precipita-

tion indices such as max-1day, max-5day, simple
daily intensity index, very wet days, and extremely
wet days have exhibited increasing trends, whereas
the annual precipitation indices of number of heavy
and very heavy precipitation days, consecutive wet
days, and consecutive dry days have shown
decreasing trends at a significance level of 0.05
(Bgure 4). Simple daily intensity index (SDII)
shows an increasing trend over India by 0.08 mm/
decade (Bgure 4b). After 1980, the wet extreme
precipitation indices, very wet (R95p) and extre-
mely wet (R99p), increased by 11.3 mm/decade
and 7.1 mm/decade, respectively (Bgure 4e, f). As
per the study of Kumar et al. (2020), about 13% of
India has significant trends of R95p for a period of
1971–2017.
The CDD has shown decreasing trends at a rate

of 0.3 days/decade in terms of spatial averaged
scales all over the country (Bgure 4i). The wet
index and annual consecutive wet days (daily
precipitation [1 mm) (CWD) have exhibited a
significant decreasing trend at 0.5 days/decade
(Bgure 4j). Most of the precipitation extremes,
simple daily intensity index, number of heavy and
very heavy precipitation days, and very wet days,
have shown similar spatial distribution with posi-
tive trends all over India and significant negative
trends across north India. The positive changes in
precipitation extremes (heavy rainfall indices of
R20mm, R95p, RX5 and RX1 days) obtained in
the present study were consistent with Yaduvanshi
et al. (2021).
The spatial trend analysis for extreme tempera-

ture indices is shown in Bgure 5. The significant
areas at 0.05 significant level with Sen’s slope
magnitude test were shown. The spatial averaged
annual extreme precipitation indices such as sum-
mer days, hottest days, warmest nights, coldest
days, coldest nights, warm nights, warm spell
duration index, diurnal temperature range and
warm days have exhibited increasing trends,
whereas the cold indices such as cool nights, cold
spell duration index, and cool days have shown
decreasing trends. The number of summer days
increased significantly over India’s northern west-
ern zone and coastal parts, as well as the central-
west zone, more specifically over Rajasthan,
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Gujarat, and Maharashtra (Bgure 5a). The hottest
day (TXx) represents an increasing trend in most
of the regions in India (*75% of region). Similarly,
the warmest nights (TNx) show a 0.05�C/decade
increase trend. Compared to other regions of India,
increasing trend in warmest nights is large over
northwestern states. Both the intensity-based
temperature extremes, hottest days and warmest
nights have shown an increasing trend after 1990s.
Similarly, the number of tropical nights showed
increasing trends all over India with higher mag-
nitudes over Rajasthan and Gujarat, except for
northeastern and Himalayan regions. The per-
centile index, such as percentage of warm nights
(TX90p), shows an increasing trend over India
(about *80% of the region) except for northeast-
ern and eastern India. Southern India has experi-
enced an increase in warm days for a period of
1951–2018. The warm nights (TN90p) percentile
depicts an increasing trend (44% of the Indian
region) at a rate of 1.5�C/decade (Bgure 2). High
magnitude of increasing trends of warm nights was
noted over Tamil Nadu, Kerala and northwestern
states of Gujarat and Rajasthan. The warm index,
WSDI exhibits an increasing trend of 75% of Indian
region. The warm index, WSDI also shows a

positive increasing trend of 9.5 days/decade. The
increasing trend is specifically conBned to the
western and southern regions of India. It is also
noted that the maximum value of WSDI of about
145.6 days occurred in the year 2009, which is
considered as one of the severe drought years all
over India with about 37% of area was aAected
with drought based on Standardized Precipitation
Evapotranspiration Index (SPEI) (Rehana and
Monish 2020, 2021). The WSDI by definition rep-
resents the heat wave index and all over India
increase of intensity and duration of heatwave
indices are evident based on the earlier studies
(e.g., Sharma and Mujumdar 2017). According to
Ratnam et al. (2016), heat waves are common in
southeastern coastal India and northcentral India.
Heat wave changes have been significantly corre-
lated with warming of Indian Ocean and telecon-
nections of ENSO (Rohini et al. 2016). The positive
trend grids of DTR were distributed over coastal
parts of central-west zones, and few parts of
peninsular India, which is in convince with earlier
research Bndings based on Vinnarasi et al. (2017).
The long-term variation along with trend anal-

ysis of extreme temperature indices is shown in
Bgure 6. Both the hottest days and warmest nights

(a) (b) (c)

(g) (h)

(d)

(f)(e)

(i) (j)

Figure 3. Spatial pattern of Sen’s slope (magnitude) of annual trends of extreme precipitation indices over India at 5%
significance level. Precipitation indices: max-1-day precipitation amount (RX1day), max-5-day precipitation amount (RX5day),
extremely wet days (R99p), very wet days (R95p), very heavy precipitation days (R20mm), heavy precipitation days (R10mm),
annual total wet day precipitation days (PRCPTOT), consecutive wet days (CWD), consecutive dry days (CDD), simple daily
intensity index (SDII).
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show an increasing trend with a rate of 0.2�C/
decade and 0.05�C/decade over India from the year
1990. In the case of summer days and tropical
nights, they represent a significant positive trend
with an increasing rate of *0.6 days/decade and
0.9 days/decade (Bgure 3). Further, the warm
nights and warm days also depict an increasing
trend at a rate of 2.9�C/decade and 1.5�C/decade.
Such intensiBed night-time temperatures trends
can have adverse impacts on crop yield, such as
decrease in rice yield based on the study of Peng
et al. (2004). All warm extremes have exhibited
significant increasing trends over the entire west-
ern, few parts of central and peninsular India,
particularly northwest India (Rajasthan and
Gujarat), Maharashtra, Western Ghats, and few
parts of Tamil Nadu and Telangana. It is conclu-
sive that all the warm temperature indices show a
positive increasing trend over India. The positive
changes of temperature extremes obtained in the
present study were consistent with the studies of
Kumar et al. (2020), with about 30% and 32% of
India with significant (positive or negative) trends
in warm nights per year (TN95) and cold nights per
year (TN5), respectively.

5.3 Dependency between large scale climate
indices and precipitation and temperature
extreme indices over India

We have utilized WTC technique to identify the
large-scale climate changes in temperature and
precipitation extremes and their phase relation-
ships. Table 2 shows the Pearson’s correlation
coefBcients estimated between climate indices and
precipitation/temperature indices at annual time
scale. The statistically significant (p\ 0.05) cor-
relation coefBcients were estimated between six
climate indices and 13 temperature extremes.
Among the six climate indices, the ISMI is highly
correlated with extreme temperature indices over
India. We selected the most significant and highly
dependent combination of extreme temperature
indices with ISMI for WTC analysis. For example,
warm indices such as percentage of warm days,
warm spell duration index and hottest days have
shown significant negative correlation coefBcients
as –0.54, �0.56, �0.54, respectively, with ISMI.
Whereas, percentage of cool days has shown a
significant positive correlation coefBcient of 0.46
with ISMI. Therefore, the WTC analysis is

Figure 5. Spatial pattern of Sen’s slope (magnitude) of annual trends of extreme temperature indices over India at 5%
significance level. The extreme indices considered are warm spell duration indicator (WSDI), percentage of warm days
(TX90p), percentage of cool days (TX10p), tropical nights (TR20), percentage of warm nights (TN90p), percentage of cool
nights (TN10p), summer days (SU25), cold spell duration indicator (CSDI), hottest days (TXx), warmest nights (TNx),
coldest nights (TNn), coldest days (TXn), daily temperature range (DTR). Trend magnitudes are estimated based on Sen’s
slope estimator.
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performed for three warm indices and ISMI com-
bination (TX90p-ISMI, WSDI-ISMI, TXx-ISMI).
Figure 7 shows the WTC and phase difference
between temperature indices (TX90P, TX10P,
WSDI, and TXx) and ISMI. The direction of
arrows in the Bgure represents the phase relation-
ship between the two variables. The arrow pointing
up and to the right-in-phase relationship with the
tide level leading. The arrow pointing down and to
the left-out-of-phase relationship with the tide level
leading. ISMI shows a strong signal in 2–3, 2–4 and

6 yrs periodicity with warm days, WSDI, and
hottest days, where arrows point left and down-
wards. The ISMI shows strong signal only in 2–4
yrs periodicity where arrows are pointing right
directions. The arrows pointing to the left illustrate
the out of phase relationship with ISMI, whereas
right arrows indicate the in-phase relation. This
seems that variables are negatively correlated or in
opposite phase (left arrows). The ISMI lags the
temperature indices over Indian region. Overall,
ISMI has shown strong inCuence on temperature

Table 2. Pearson’s correlation coefBcients estimated between annual
averaged temperature and precipitation extremes and climate indices
[Southern Oscillation Index (SOI), PaciBc Decadal Oscillation (PDO),
Dipole Mode Index (DMI), Arctic Oscillation (AO), North Atlantic
Oscillation (NAO), Indian Summer Monsoon Index (ISMI)] all over
India for 1951–2018.
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extremes along with precipitation extremes. The
earlier studies have proven that ISMI has a strong
inCuence on precipitation on monthly and annual
time scales (e.g., Das et al. 2020). It can be noted
that the ISMI index is deBned based on monsoon
season, and the present study compares such
monsoon month averaged precipitation index with
annual precipitation extreme indices. However,
ISMI has shown strong wavelet coherence, repre-
senting dominant eAect of summer monsoon all
over India at annual scales as explained in the
study of Das et al. (2020). The same study also
reveals that wavelet coherence is continuous
between ISMI and precipitation at annual scale for
the period 1951–2015 all over India, which is in
convince with the present study Bndings.
Similarly, we have also done analysis for pre-

cipitation indices with AO (Bgure 8). The 2–5-yr
and 3–5-yr periodicity are dominant in both indi-
ces. In both the indices, 2–5 yrs, 3–5-yrs periodicity
is dominant. The AO and RX1day and RX5day are
in phase relationship, which indicates the AO leads
both these indices. Based on earlier studies (Mid-
huna and Dimri 2019), AO also plays a major role
in inCuencing the winter climate of the Northern
Hemisphere as well as the Indian winter monsoon.
From wavelet analysis and wavelet transform

coherence analysis, temperature (precipitation)

indices were strongly teleconnected to ISMI (AO)
over Indian region. In addition to the inCuence of
large-scale climate patterns, land reclamation,
urbanization and other human activities also cause
changes in climate extremes (Boyaj et al. 2020).
These Bndings will have direct relevance to
warming impact over Indian region and suggest an
increased probability of enhanced future extremes,
impacts, and related risks in a warming climate.
The present study is, therefore, an important step
towards understanding the joint spatio-temporal
signals in the growing collection of droughts due to
pronounced changes in extreme precipitation and
temperatures, which can be used to understand the
near future variability with CMIP6 data sets.

6. Discussion

In recent decades, India has seen an increase in the
frequency, duration, and intensity of extreme
weather events, resulting in massive loss causalities
and economic losses. It is critical to gain knowledge
about extremes, which will aid the research com-
munity in assessing climate change processes and
their impact on various sectors. Based on the cur-
rent study, extreme precipitation indices spatial
variability has been found to be more intense

Figure 7. Wavelet coherence and phase difference between temperature extremes and climate indices at an annual time scale
over India for the years 1951–2018. Wavelet coherence between percentage of warm days (TX90p) and ISMI (a), percentage of
cool days (TX10p) and ISMI (b), warm spell duration index (WSDI) and ISMI (c) and hottest days (TXx) and ISMI (d). The
thick black contour shows 5% significance level against red noise process.
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towards the Western Ghats and the northeast
parts, with more intense dry indices towards the
northwestern states of India. The low-pressure
systems over the Bay of Bengal and their move-
ment over northern parts of India cause widespread
rainfall activity over the central and west coasts of
India (Rajeevan and Nayak 2017).
This study reported that most of the precipita-

tion extremes over India had been intensiBed. The
increase in extreme rainfall may be attributed to
the increasing variability of the low-level monsoon
westerlies in the Arabian Sea (Roxy et al. 2017).
The increasing trend of extreme precipitation in
the Western Ghats is mainly caused by the con-
vective clouds (Maheskumar et al. 2014) and oA-
shore troughs and vortices (Francis and Gadgil
2006). Atmospheric rivers and western distur-
bances are reported to be the causes for winter-
time precipitation, whereas tropical lows/tropical
depressions are pointed out to be responsible for
summer-time extreme precipitation in northern
and northeastern India (Yang et al. 2018). Increa-
ses in extreme precipitation in the tropics are also
linked to an increase in mean temperature under

global warming (Rajeevan et al. 2008) as well as
with urbanization (Kishtawal et al. 2010). Fur-
thermore, the increase of precipitation extremes is
attributed to increasing trend of sea surface tem-
perature variability and surface latent heat Cux
over tropical Indian Ocean (Rajeevan et al. 2008).
Such an increase in precipitation extremes will
have an impact on agricultural yield, Cash Cooding,
and ecosystems (Yaduvanshi et al. 2021).
This study reported that most of the warm

indices have significant increasing trends and
decreasing signals of cold indices over India. Such
an increase (decrease) in warm (cold) extreme
indices was also noted by a few authors at regional
scales and all over India independently at coarser
resolution (Dash and Mamgain 2011). The present
study provides the spatio-temporal trends at Bner
resolution and coherence of temperature extremes
with precipitation indices. It is well known that the
change in extreme temperature indices can be
attributed to greenhouse gas and aerosol emissions
and growing urbanization (Dimri 2019). Decreas-
ing (increasing) trends of cold (warm) days are
correlated to the alterations/shifts in rainfall that

Figure 8. Wavelet coherence and phase difference between precipitation extremes and climate indices at an annual time scale
over India for the years 1951–2018. Wavelet coherence between max 1-day precipitation amount (RX1day) and AO (a), max
5-day precipitation amount (RX5day) and AO (b), number of very heavy precipitation days (R20mm) and AO (c), consecutive
wet days (CWD) and AO (d), simple daily intensity index (SDII) and AO (e). The thick black contour shows 5% significance
level against red noise process.
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cause redistribution of moisture, whereas incre-
ments in the frequency of cold days are correlated
to the aerosols, especially over Indo-Gangetic
plains previously (Ramanathan et al. 2007).
IntensiBed changes in extreme temperature indices
have an impact on crop yield, production and
water resources management (Peng et al. 2004).
Summer days (SU25), for example, are an envi-
ronmental factor that can have a negative impact
on rainfed crop production (dos Santos et al. 2022).
It is also evident that, for every increase of 1�C of
minimum temperature of about 10% decline in rice
grain yield (Peng et al. 2004). In this context,
global warming and consequent intensiBcation of
precipitation and temperature extremes as pre-
sented in this study, will have adverse eAects on
agriculture and water resources with pronounced
impacts hydroclimatic extremes such as Cash
Coods, droughts, and heatwaves (Sharma and
Mujumdar 2017).
Large-scale climatic indices have a strong inCu-

ence on hydro-meteorological variables, and it is
essential to study the dependence structure for
eAective climate change predictions. There have
been attempts to establish a link between large-
scale climatic phenomenon indices and precipita-
tion and temperature extremes both globally and
in India (Yadav et al. 2013; Xiao et al. 2017; Shi
and Wang 2019; Das et al. 2020). Studies reveal
that ISMI is the most eAective climatic telecon-
nection with Indian precipitation at monthly time
scales. Furthermore, the present study also showed
that ISMI plays a major role on precipitation
extremes at annual scales along with warm and
cold extreme indices. The AO has also identiBed a
significant teleconnection to impact Indian pre-
cipitation extremes (Midhuna and Dimri 2019). El
Niño and La Niña events are also found to inCuence
the precipitation and temperature extremes in the
previous literature (Alexander et al. 2009).
The present study used the most dependable

Bne-resolution gridded data sets developed based
on station-based observations, which is a major
limitation of the study. However, the use of in-situ
station-based observations will provide the most
accurate and realistic extremes analysis compared
to gridded datasets due to the inherent uncertain-
ties towards the selected interpolation methods
and most importantly ability to represent extreme
variabilities (King et al. 2013; Contractor et al.
2015). This provided usability of high-resolution
gridded datasets, which are prominent for climate
monitoring at national scales; several studies

successfully implemented climate extreme analysis
based on gridded datasets globally (Alexander and
Arblaster 2017) and India (Gupta et al. 2020;
Kumar et al. 2020).

7. Conclusions

The study investigated the analysis of spatio-tem-
poral exploration of precipitation, maximum and
minimum temperature extremes over India during
1951–2018, with a view to investigate their asso-
ciation with large scale climate indices. The study
looked at the relationship between large-scale cli-
mate indices and precipitation and temperature
extremes across India. The following major
conclusions are derived from this study:

• The spatial climatological average of wet pre-
cipitation extreme indices has been found to be
more intense towards Western Ghats and north-
east parts, while dry precipitation extremes as
more intense over northwestern states of India.

• The very wet days (R95) show an increasing
trend over India followed by extremely wet days
(R99) and simple daily intensity of precipitation
(SDII) indices except over Indo-Gangetic region,
indicating a climate change signal. Our results
showed that the increase in consecutive dry days
(CDD) over central India and decrease in con-
secutive wet days (CWD) throughout India
indicate impact of warming over India. Signifi-
cant increase in the max-5-day precipitation
amount (RX5day) over the East Coast of India.

• The decrease in summer days (SU25) over north
India may have a significant impact on snow and
glacier melting. The increase of hottest days
(TXx) shows an increasing trend over India can
lead to heat waves, droughts and decline in
water resources. Most of the indices show a
decreasing pattern, especially over IGP region.
The warm extremes have exhibited significant
increasing trends over complete western zone,
few parts of central and peninsular India,
particularly northwest India (Rajasthan and
Gujarat), Maharashtra, Western Ghats, and
few parts of Tamil Nadu and Telangana.

• The cold indices, such as coldest days and nights
have increased over the past 68 years, specifi-
cally over northwest (Rajasthan and Gujarat),
Maharashtra, Western Ghats, and few parts of
Tamil Nadu. Whereas, extremes such as cool
nights, cold spells, and cool days have shown
decreasing signals all over India.
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• The extreme warm indices (percentage of warm
days, warm spell duration index, and hottest
days) were negatively connected with ISMI and
positively connected with extreme cold index
(percentage of cool days).

• Our results suggest that warming and moisten-
ing of the atmosphere may aAect the spatial
extent of the precipitation over the Indian
region.

• The relationship between teleconnections of
temperature/precipitation variability and
extremes is significantly strong over India.
Temperature (precipitation) indices were
strongly teleconnected to ISMI (AO). The strong
inCuence of teleconnections on the characteris-
tics of precipitation extremes also suggests a
potentially higher magnitude of changes as a
response to rising temperature.

• The high dependence of precipitation and tem-
perature extremes with large-scale climate
indices indicates high vulnerability to extremes
under climate change.
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