54 research outputs found

    Enhancing Knee Osteoarthritis severity level classification using diffusion augmented images

    Full text link
    This research paper explores the classification of knee osteoarthritis (OA) severity levels using advanced computer vision models and augmentation techniques. The study investigates the effectiveness of data preprocessing, including Contrast-Limited Adaptive Histogram Equalization (CLAHE), and data augmentation using diffusion models. Three experiments were conducted: training models on the original dataset, training models on the preprocessed dataset, and training models on the augmented dataset. The results show that data preprocessing and augmentation significantly improve the accuracy of the models. The EfficientNetB3 model achieved the highest accuracy of 84\% on the augmented dataset. Additionally, attention visualization techniques, such as Grad-CAM, are utilized to provide detailed attention maps, enhancing the understanding and trustworthiness of the models. These findings highlight the potential of combining advanced models with augmented data and attention visualization for accurate knee OA severity classification.Comment: Paper has been accepted to be presented at ICACECS 2023 and the final version will be published by Atlantis Highlights in Computer Science (AHCS) , Atlantis Press(part of Springer Nature

    Urinary bladder cancer staging in CT urography using machine learning

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139956/1/mp12510.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139956/2/mp12510_am.pd

    Reactome knowledgebase of human biological pathways and processes

    Get PDF
    Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms

    The Reactome pathway Knowledgebase

    Get PDF
    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently

    Reactome knowledgebase of human biological pathways and processes

    Get PDF
    Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms

    The Reactome pathway knowledgebase

    Get PDF
    Reactome (http://www.reactome.org) is a manually curated open-source open-data resource of human pathways and reactions. The current version 46 describes 7088 human proteins (34% of the predicted human proteome), participating in 6744 reactions based on data extracted from 15 107 research publications with PubMed links. The Reactome Web site and analysis tool set have been completely redesigned to increase speed, flexibility and user friendliness. The data model has been extended to support annotation of disease processes due to infectious agents and to mutation

    Isolation of Two Strong Poly (U) Binding Proteins from Moderate Halophile Halomonas eurihalina and Their Identification as Cold Shock Proteins

    Get PDF
    Cold shock proteins (Csp) are known to be expressed in response to sudden decrease in temperature. They are thought to be involved in a number of cellular processes viz., RNA chaperone activity, translation, transcription, nucleoid condensation. During our studies on ribosomal protein S1 in moderate halophile Halomonas eurihalina, we observed the presence of two strong poly (U) binding proteins in abundance in cell extracts from cells grown under normal growth conditions. The proteins can be isolated in a single step using Poly (U) cellulose chromatography. The proteins were identified as major cold shock proteins belonging to Csp A family by MALDI-TOF and bioinformatic analysis. Csp 12 kDa was found in both exponential and stationary phases whereas Csp 8 kDa is found only in exponential phase

    Reactome: a database of reactions, pathways and biological processes

    Get PDF
    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice

    JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis

    No full text
    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H(2)O(2) treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H(2)O(2) level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A
    corecore