49 research outputs found

    Distribution of lead in single atmospheric particles

    Get PDF
    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent

    Impact ionization mass spectra of anorthite cosmic dust analogue particles

    Get PDF
    Anorthite, the Ca-rich end-member of plagioclase feldspar, is a dominant mineral component of the Lunar highlands. Plagioclase feldspar is also found in comets, meteorites and stony asteroids. It is therefore expected to contribute to the population of interplanetary (and circumplanetary) dust grains within the solar system. After coating micron- and submicron-sized grains of Anorthite with a conductive layer of Platinum, the mineral was successfully accelerated to hypervelocity speeds in the Max Planck Institut für Kernphysik’s Van de Graaff accelerator. We present impact ionization mass spectra generated following the impacts of anorthite grains with a prototype mass spectrometer (the Large Area Mass Analyser, LAMA) designed for use in space, and discuss the behavior of the spectra with increasing impact energy. Correlation analysis is used to identify the compositions and sources of cations present in the spectra, enabling the identification of several molecular cations (e.g., CaAlO2, CaSiO2, Ca2AlO3/CaAlSi2O2) which identify anorthite as the progenitor bulk grain material

    Analysis concepts of aerosols by on-line aerosol mass spectrometry.

    No full text
    It is known that aerosols have an impact on climate, air quality and health. To better characterize these effects, the knowledge of the aerosol particle properties, such as size and chemical composition, at the individual level is needed. Toward this purpose, a Single Particle Aerosol Laser Mass Spectrometer (SPALMS) has been designed and developed to characterize in details the organic fraction of particles. The instrument samples the aerosol with a nozzle system and sizes particles individually by laser velocimetry. The single particle constituents are then volatilized (desorption) and ionized (ionization) by laser. The resulting cations and anions are analyzed with a bipolar time-of-flight mass spectrometer. The resulting mass spectra provide a “fingerprint” of the particle composition. Thus the SPALMS instrument evaluates the mixing state, external versus internal, of the aerosol and allows the investigation of the chemical composition size dependency of the particles. The desorption and ionization steps are critical to obtain a good qualitative chemical analysis of the particle. Indeed many processes take place during these steps which fragment and alter the initial molecules in the particle. The simultaneous desorption and ionization with a single laser (337 nm) combined with a bipolar mass spectrometer is well suited for the analysis of mineral particles. On the other hand, organics in particles are better analyzed by operating first the constituents desorption with an infra-red laser (10.6 micrometers) and then the ionization shortly after with an ultra-violet laser (248 nm). Indeed molecules are softly ionized via a SPI or REMPI process. In this manner the resulting mass spectra are more representative of the particle composition since organics are less fragmented. As the SPALMS instrument involves many different measurement steps based of very different principles, it is equipped with many data acquisition devices (up to 12 channels) to record the corresponding information. By combining these data together, it is possible to improve the reliability of the measurements and to infer additional particle properties such as optical diameter and density

    The ion trap aerosol mass spectrometer: field intercomparison with the ToF-AMS and the capability of differentiating organic compound classes via MS-MS

    No full text
    Further development and optimisation of a previously described ion trap aerosol mass spectrometer (IT-AMS) are presented, which resulted in more reproducible and robust operation and allowed for the instrument's first field deployment. Results from this 11-day-long measurement indicate that the instrument is capable of providing quantitative information on organics, nitrate, and sulfate mass concentrations with reasonable detection limits (0.5–1.4 µg m−3 for 1 h averages) and that results obtained with the IT-AMS can directly be related to those from Aerodyne aerosol mass spectrometers. The capability of the IT-AMS to elucidate the structure of fragment ions is demonstrated via an MS4 study on tryptophan. Detection limits are demonstrated to be sufficiently low to allow for MS2 studies not only in laboratory but also in field measurements under favourable conditions or with the use of an aerosol concentrator. In laboratory studies the capability of the IT-AMS to differentiate [C4Hy]+ and [C3HyO]+ fragments at the nominal m∕z 55 and 57 via their characteristic fragmentation patterns in MS2 experiments is demonstrated. Furthermore, with the IT-AMS it is possible to distinguish between fragments of the same elemental composition ([C2H4O2]+ at m∕z 60 and [C3H5O2]+ at m∕z 73) originating from different compound classes (carboxylic acids and sugars) due to their different molecular structure. These findings constitute a proof of concept and could provide a new means of distinguishing between these two compound classes in ambient organic aerosol

    An on-line aerosol laser mass spectrometer with three, easily interchangeable laser based ionisation methods for characterisation of inorganic and aromatic compounds on particles.

    No full text
    An aerosol mass spectrometric set-up is presented comprising three different laser based techniques for on-line analysis of particles. The implemented methods are one-step laser desorption/ionisation (LDI), two-step laser desorption/photoionisation (LDPI) and thermal desorption/photoionisation (TDPI). Photoirmisation processes for the latter two methods are based on resonance enhanced multiphoton ionisation (REMPI), which is highly selective and sensitive for polyaromatic hydrocarbons (PAH). LDI is especially suitable for the detection of inorganic compounds and the determination of sum values such as elemental carbon content. Investigated samples were particles from spruce wood ash generated by an oxygen-controlled residential heating system and exhaust gases from a gasoline driven passenger car. In the positive LDI mass spectra several metal cations such as potassium and iron are detectable, whereas carbon clusters can be observed with the negative mode. With LD-REMPI and TD-REMPI various PAH such as phenanthrene and derivatives, pyrene, etc., become visible. In the wood ash samples relatively high yields of retene were found, which could be used as tracer compound for coniferous wood combustion. All three modes can be applied with only slight modifications of the instrument. Thus, it allows characterising single particles on a real time basis and, depending on the application, the most convenient technique can be selected
    corecore