1,004 research outputs found
Vortex and half-vortex dynamics in a spinor quantum fluid of interacting polaritons
Spinorial or multi-component Bose-Einstein condensates may sustain fractional
quanta of circulation, vorticant topological excitations with half integer
windings of phase and polarization. Matter-light quantum fluids, such as
microcavity polaritons, represent a unique test bed for realising strongly
interacting and out-of-equilibrium condensates. The direct access to the phase
of their wavefunction enables us to pursue the quest of whether half vortices
---rather than full integer vortices--- are the fundamental topological
excitations of a spinor polariton fluid. Here, we are able to directly generate
by resonant pulsed excitations, a polariton fluid carrying either the half or
full vortex states as initial condition, and to follow their coherent evolution
using ultrafast holography. Surprisingly we observe a rich phenomenology that
shows a stable evolution of a phase singularity in a single component as well
as in the full vortex state, spiraling, splitting and branching of the initial
cores under different regimes and the proliferation of many vortex anti-vortex
pairs in self generated circular ripples. This allows us to devise the
interplay of nonlinearity and sample disorder in shaping the fluid and driving
the phase singularities dynamicsComment: New version complete with revised modelization, discussion and added
material. 8 pages, 7 figures. Supplementary videos:
https://drive.google.com/folderview?id=0B0QCllnLqdyBfmc2ai0yVF9fa2g2VnZodGUwemVkLThBb3BoOVRKRDJMS2dUdjlZdkRTQk
Solvent free interactions in contact pairs of molecules of biological interest: Laser spectroscopic and electrospray mass spectrometric studies
A laser spectroscopic and mass spectrometric study of ionic and molecular clusters of biological interest is reported. The molecules of interest and their aggregates were generated in a supersonic beam and analyzed by mass resolved resonant two photon absorption and ionization (R2PI) and by collision induced mass spectrometry (CID-MS). The absence of the solvent allows to study these systems in the isolated state free of undesired solvent effects which may level off the differences in their properties. The gas phase results have been compared to theoretical estimates of the structure and stability of the systems under investigation
CLOVER - A new instrument for measuring the B-mode polarization of the CMB
We describe the design and expected performance of Clover, a new instrument
designed to measure the B-mode polarization of the cosmic microwave background.
The proposed instrument will comprise three independent telescopes operating at
90, 150 and 220 GHz and is planned to be sited at Dome C, Antarctica. Each
telescope will feed a focal plane array of 128 background-limited detectors and
will measure polarized signals over angular multipoles 20 < l < 1000. The
unique design of the telescope and careful control of systematics should enable
the B-mode signature of gravitational waves to be measured to a
lensing-confusion-limited tensor-to-scalar ratio r~0.005.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXVIXth
Rencontres de Moriond "Exploring the Universe
Antibiotic activity of a Paraphaeosphaeria sporulosa-produced diketopiperazine against Salmonella enterica
A diketopiperazine has been purified from a culture filtrate of the endophytic fungus Paraphaeosphaeria sporulosa, isolated from healthy tissues of strawberry plants in a survey of microbes as sources of anti-bacterial metabolites. Its structure has been determined by nuclear magnetic resonance (NMR) and liquid chromatography–mass spectrometry (LC–MS) analyses and was found to be identical to cyclo(L-Pro-L-Phe) purified from species of other fungal genera. This secondary metabolite has been selected following bioguided-assay fractionation against two strains of Salmonella enterica, the causal agent of bovine gastroenteritis. The diketopiperazine cyclo(L-Pro-L-Phe), isolated for the first time from Paraphaeosphaeria species, showed minimum inhibitory concentration (MIC) values of 71.3 and 78.6 μg/mL against the two S. enterica strains. This finding may be significant in limiting the use of synthetic antibiotics in animal husbandry and reducing the emergence of bacterial multidrug resistance. Further in vivo experiments of P. sporulosa diketopiperazines are important for the future application of these metabolites
Reasons for tooth extractions and related risk factors in adult patients: a cohort study
Background: The aimof this studywas to evaluate oral status, the reasons for tooth extractions and related risk factors in adult patients attending a hospital dental practice. Methods: 120 consecutive patients ranging from23 to 91 years in age (mean age of 63.3 - 15.8) having a total of 554 teeth extracted were included. Surveys about general health status were conducted and potential risk factors such as smoking, diabetes and age were investigated. Results: a total of 1795 teeth weremissing after extraction procedures and the mean number of remaining teeth after the extraction process was 16.8 ± 9.1 per patient. Caries (52.2%) was the most common reason for extraction along with periodontal disease (35.7%). Males were more prone to extractions, with 394 of the teeth extracted out of the total of 554 (71.1%). Male sex (β = 2.89; 95% CI 1.26, 4.53; p = 0.001) and smoking habit (β = 2.95; 95% CI 1.12, 4.79; p = 0.002) were related to a higher number of teeth extracted. Age (β = -0.24; 95% CI -0.31, -0.16; p < 0.001) and diabetes (β = -4.47; 95% CI -7.61, -1.33; p = 0.006) were related to a higher number of missing teeth at evaluation time. Moreover, periodontal disease was more common as a reason of extraction among diabetic patients than among non-diabetic ones (p = 0.04). Conclusions: caries and periodontal disease were the most common causes of extraction in a relatively old study population: further screening strategies might be required for the early interception of caries and periodontal disease
A Limit on the Large Angular Scale Polarization of the Cosmic Microwave Background
We present an upper limit on the polarization of the Cosmic Microwave Background at 7 degree angular scales in the frequency band between 26 and 36 GHz, produced by the POLAR experiment. The campaign produced a map of linear polarization over the R.A. range 112 degrees - 275 degrees at declination 43degrees. The model-independent upper limit on the E-mode polarization component of the CMB at angular scales l = 2 - 20 is 10 microKelvin (95% confidence). The corresponding limit for the B-mode is also 10 microKelvin. Constraining the B-mode power to be zero, the 95% confidence limit on E-mode power alone is 8 microKelvin
- …