13,175 research outputs found

    An "All Possible Steps" Approach to the Accelerated Use of Gillespie's Algorithm

    Full text link
    Many physical and biological processes are stochastic in nature. Computational models and simulations of such processes are a mathematical and computational challenge. The basic stochastic simulation algorithm was published by D. Gillespie about three decades ago [D.T. Gillespie, J. Phys. Chem. {\bf 81}, 2340, (1977)]. Since then, intensive work has been done to make the algorithm more efficient in terms of running time. All accelerated versions of the algorithm are aimed at minimizing the running time required to produce a stochastic trajectory in state space. In these simulations, a necessary condition for reliable statistics is averaging over a large number of simulations. In this study I present a new accelerating approach which does not alter the stochastic algorithm, but reduces the number of required runs. By analysis of collected data I demonstrate high precision levels with fewer simulations. Moreover, the suggested approach provides a good estimation of statistical error, which may serve as a tool for determining the number of required runs.Comment: Accepted for publication at the Journal of Chemical Physics. 19 pages, including 2 Tables and 4 Figure

    redMaPPer III: A Detailed Comparison of the Planck 2013 and SDSS DR8 RedMaPPer Cluster Catalogs

    Full text link
    We compare the Planck Sunyaev-Zeldovich (SZ) cluster sample (PSZ1) to the Sloan Digital Sky Survey (SDSS) redMaPPer catalog, finding that all Planck clusters within the redMaPPer mask and within the redshift range probed by redMaPPer are contained in the redMaPPer cluster catalog. These common clusters define a tight scaling relation in the richness-SZ mass (λ\lambda--MSZM_{SZ}) plane, with an intrinsic scatter in richness of σλ∣MSZ=0.266±0.017\sigma_{\lambda|M_{SZ}} = 0.266 \pm 0.017. The corresponding intrinsic scatter in true cluster halo mass at fixed richness is ≈21%\approx 21\%. The regularity of this scaling relation is used to identify failures in both the redMaPPer and Planck cluster catalogs. Of the 245 galaxy clusters in common, we identify three failures in redMaPPer and 36 failures in the PSZ1. Of these, at least 12 are due to clusters whose optical counterpart was correctly identified in the PSZ1, but where the quoted redshift for the optical counterpart in the external data base used in the PSZ1 was incorrect. The failure rates for redMaPPer and the PSZ1 are 1.2%1.2\% and 14.7%14.7\% respectively, or 9.8% in the PSZ1 after subtracting the external data base errors. We have further identified 5 PSZ1 sources that suffer from projection effects (multiple rich systems along the line-of-sight of the SZ detection) and 17 new high redshift (z≳0.6z\gtrsim 0.6) cluster candidates of varying degrees of confidence. Should all of the high-redshift cluster candidates identified here be confirmed, we will have tripled the number of high redshift Planck clusters in the SDSS region. Our results highlight the power of multi-wavelength observations to identify and characterize systematic errors in galaxy cluster data sets, and clearly establish photometric data both as a robust cluster finding method, and as an important part of defining clean galaxy cluster samples.Comment: comments welcom

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    Low-cost, aerial photographic inventory of tidal wetlands

    Get PDF
    There are no author-identified significant results in this report

    Snow and the ground temperature record of climate change

    Get PDF
    Journal ArticleBorehole temperature-depth profiles contain a record of surface ground temperature (SGT) changes with time and complement surface air temperature (SAT) analysis to infer climate change over multiple centuries. Ground temperatures are generally warmer than air temperatures due to solar radiation effects in the summer and the insulating effect of snow cover during the winter. The low thermal diffusivity of snow damps surface temperature variations; snow effectively acts as an insulator of the ground during the coldest part of the year

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc
    • …
    corecore