121 research outputs found

    The startled seahorse: is the hippocampus necessary for contextual fear conditioning?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56233/2/davisTICS98.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/56233/1/marenTICS98.pd

    Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination

    Full text link
    We have shown previously that electrolytic lesions of the dorsal hippocampus (DH) produce a severe deficit in contextual fear if made 1 d, but not 28 d, after fear conditioning (). As such, the hippocampus seems to play a time-limited role in the consolidation of contextual fear conditioning. Here, we examine retrograde amnesia of contextual fear produced by DH lesions in a within-subjects design. Unlike our previous reports, rats had both a remote and recent memory at the time of the lesion. Rats were given 10 tone-shock pairings in one context (remote memory) and 10 tone-shock pairings in a distinct context (with a different tone) 50 d later (recent memory), followed by DH or sham lesions 1 d later. Relative to controls, DH-lesioned rats exhibited no deficit in remote contextual fear, but recent contextual fear memory was severely impaired. They also did not exhibit deficits in tone freezing. This highly specific deficit in recent contextual memory demonstrated in a within-subjects design favors mnemonic over performance accounts of hippocampal involvement in fear. These findings also provide further support for a time-limited role of the hippocampus in memory storage.http://deepblue.lib.umich.edu/bitstream/2027.42/56234/1/anagJN99.pd

    Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis

    Full text link
    Muscarinic-cholinergic antagonism produces learning and memory deficits in a wide variety of hippocampal-dependent tasks. Hippocampal lesions produce both acquisition deficits and retrograde amnesia of contextual fear (fear of the place of conditioning), but do not impact fear conditioning to discrete cues (such as a tone). In order to examine the effects of muscarinic antagonism in this paradigm, rats were given 0.01 to 100 mg/kg of scopolamine (or methylscopolamine) either before or after a fear conditioning session in which tones were paired with aversive footshocks. Fear to the context and the tone were assessed by measuring freezing in separate tests. It was found that pretraining, but not post-training, scopolamine severely impaired fear conditioning; methylscopolamine was ineffective in disrupting conditioning. Although contextual fear conditioning was more sensitive to cholinergic disruption, high doses of scopolamine also disrupted tone conditioning. Scopolamine did not affect footshock reactivity, but did produce high levels of activity. However, hyperactivity was not directly responsible for deficits in conditioning. It was concluded that scopolamine disrupts CS-US association formation or CS processing, perhaps through an attenuation of hippocampal theta rhythm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56239/1/anagNPHARM99.pd

    A High Through-Put Reverse Genetic Screen Identifies Two Genes Involved in Remote Memory in Mice

    Get PDF
    Previous studies have revealed that the initial stages of memory formation require several genes involved in synaptic, transcriptional and translational mechanisms. In contrast, very little is known about the molecular and cellular mechanisms underlying later stages of memory, including remote memory (i.e. 7-day memory). To identify genes required for remote memory, we screened randomly selected mouse strains harboring known mutations. In our primary reverse genetic screen, we identified 4 putative remote memory mutant strains out of a total of 54 lines analyzed. Additionally, we found 11 other mutant strains with other abnormal profiles. Secondary screens confirmed that mutations of integrin β2 (Itgβ2) and steryl-O-acyl transferase 1 (Soat1) specifically disrupted remote memory. This study identifies some of the first genes required for remote memory, and suggests that screens of targeted mutants may be an efficient strategy to identify molecular requirements for this process

    Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice

    Full text link
    Mice deficient in monoamine oxidase A (MAOA), an enzyme that metabolizes monoamines such as norepinephrine and serotonin, have elevated norepinephrine and serotonin levels in the frontal cortex, hippocampus, and cerebellum, compared with normal wild-type mice. Since monoamines in these areas are critically involved in a variety of behaviors, we examined learning and memory (using emotional and motor tasks) in MAOA mutant mice. The MAOA-deficient mice exhibited significantly enhanced classical fear conditioning (freezing to both tone and contextual stimuli) and step-down inhibitory avoidance learning. In contrast, eyeblink conditioning was normal in these mutant mice. The female MAOA-deficient mice also displayed normal species-typical maternal behaviors (nesting, nursing, and pup retrieval). These results suggest that chronic elevations of monoamines, due to a deletion of the gene encoding MAOA, lead to selective alterations in emotional behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56225/1/kimPNAS97.pd

    Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons

    Get PDF
    The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases

    Deficient maternal care resulting from immunological stress during pregnancy is associated with a sex-dependent enhancement of conditioned fear in the offspring

    Get PDF
    Activation of maternal stress response systems during pregnancy has been associated with altered postpartum maternal care and subsequent abnormalities in the offspring’s brain and behavioral development. It remains unknown, however, whether similar effects may be induced by exposure to immunological stress during pregnancy. The present study was designed to address this issue in a mouse model of prenatal immune activation by the viral mimic polyriboinosinic–polyribocytidilic acid (PolyI:C). Pregnant mice were exposed to PolyI:C-induced immune challenge or sham treatment, and offspring born to PolyI:C- and sham-treated dams were simultaneously cross-fostered to surrogate rearing mothers, which had either experienced inflammatory or vehicle treatment during pregnancy. We evaluated the effects of the maternal immunological manipulation on postpartum maternal behavior, and we assessed the prenatal and postnatal maternal influences on anxiety- and fear-related behavior in the offspring at the peri-adolescent and adult stage of development. We found that PolyI:C treatment during pregnancy led to changes in postpartum maternal behavior in the form of reduced pup licking/grooming and increased nest building activity. Furthermore, the adoption of neonates by surrogate rearing mothers, which had experienced PolyI:C-induced immunological stress during pregnancy, led to enhanced conditioned fear in the peri-adolescent and adult offspring, an effect that was exclusively seen in female but not male subjects. Unconditioned (innate) anxiety-related behavior as assessed in the elevated plus maze and open field explorations tests were not affected by the prenatal and postnatal manipulations. Our results thus highlight that being raised by gestationally immune-challenged surrogate mothers increases the vulnerability for specific forms of fear-related behavioral pathology in later life, and that this association may be mediated by deficits in postpartum maternal care. This may have important implications for the identification and characterization of early-life risk factors involved in the developmental etiology of fear-related neuropsychiatric disorders

    Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    Get PDF
    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes
    • …
    corecore