23 research outputs found

    Semi-transparent Boundary Conditions in the Worldline Formalism

    Full text link
    The interaction of a quantum field with a background containing a Dirac delta function with support on a surface of codimension 1 represents a particular kind of matching conditions on that surface for the field. In this article we show that the worldline formalism can be applied to this model. We obtain the asymptotic expansion of the heat-kernel corresponding to a scalar field on Rd+1\mathbb{R}^{d+1} in the presence of an arbitrary regular potential and subject to this kind of matching conditions on a flat surface. We also consider two such surfaces and compute their Casimir attraction due to the vacuum fluctuations of a massive scalar field weakly coupled to the corresponding Dirac deltas.Comment: 12 page

    Casimir effect in Snyder Space

    Full text link
    We show that two indistinguishable aspects of the divergences occurring in the Casimir effect, namely the divergence of the energy of the higher modes and the non-com\-pact\-ness of the momentum space, get disentangled in a given noncommutative setup. To this end, we consider a scalar field between two parallel plates in an anti-Snyder space. Additionally, the large mass decay in this noncommutative setup is not necessarily exponential.Comment: 15 pages, discussion regarding the large-mass asymptotics added, typos corrected, missing factor in eq. (1) correcte

    Boundaries in the Moyal plane

    Get PDF
    We study the oscillations of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. The space of quantum fluctuations of the field is finite dimensional and displays the rotational and parity symmetry of the disc. We perform a numerical evaluation of the (finite) Casimir energy and obtain similar results as for the fuzzy sphere and torus.Comment: 19 pages, 6 figures. Replaced by published versio

    Trace anomalies for Weyl fermions: too odd to be true?

    Full text link
    We review recent discussions regarding the parity-odd contribution to the trace anomaly of a chiral fermion. We pay special attention to the perturbative approach in terms of Feynman diagrams, comparing in detail the results obtained using dimensional regularization and the Breitenlohner--Maison prescription with other approaches.Comment: 19 pages, 2 figures. Contribution to "Avenues of Quantum Field Theory in Curved Spacetime", Genoa, 2022. Partially based on 2101.11382 [hep-th

    Trace anomaly for Weyl fermions using the Breitenlohner-Maison scheme for γ *

    Get PDF
    We revisit the computation of the trace anomaly for Weyl fermions using dimensional regularization. For a consistent treatment of the chiral gamma matrix γ* in dimensional regularization, we work in n dimensions from the very beginning and use the Breitenlohner-Maison scheme to define γ*. We show that the parity-odd contribution to the trace anomaly vanishes (for which the use of dimension-dependent identities is crucial), and that the parity-even contribution is half the one of a Dirac fermion. To arrive at this result, we compute the full renormalized expectation value of the fermion stress tensor to second order in perturbations around Minkowski spacetime, and also show that it is conserved.Facultad de Ciencias Exacta
    corecore