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1 Introduction

In a series of recent articles it has been debated whether there could be unitarity issues at
the one-loop level in theories involving chiral fermions in four-dimensional curved space-
times [1]. Elaborating on some previous results [2, 3], the group of Bonora et al. has
claimed that there exists a CP-odd term in the trace anomaly of Weyl fermions, whose
coefficient is purely imaginary [4–6]. These results were derived in dimensional regulariza-
tion, both using a standard perturbative computation around Minkowski spacetime using
Feynman diagrams and introducing an “metric-axial-tensor gravity” approach similar to
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the axial vector potential in gauge theory. However, with strictly four-dimensional regu-
larization methods such as Pauli-Villars regularization [7, 8] employed by Bastianelli et al.,
or Hadamard subtraction used by Zahn and the last author [9], CP-odd terms in the trace
anomaly do not arise at all. In between, this has given rise to more general discussions in-
volving gauge anomalies [10, 11] and general CP-violating theories [12, 13]. Apart from the
natural consequences this may have in the building of the Standard Model and extensions
thereof, there will also be repercussions in our understanding of the early universe [14–16].
Other recent related results concern the anomalies for non-relativistic fermions [17] and
the anomalies in the Standard-Model Effective Field Theory [18, 19].

In [4–6] the authors have made use of dimensional regularization [20–22]. As is well-
known since its birth [21, 23], the definition of the chiral γ∗ matrix in this framework is
subtle, and many proposals have been made; see [24] for a comparison. It seems to us that
the following prescriptions are the most promising solutions:

• The Breitenlohner-Maison scheme [25], which is an improvement of the original pro-
posal made in [21]. It formally breaks n-dimensional Lorentz covariance by writing
the full spacetime as a direct product, one piece being strictly four-dimensional and
the other having (n− 4) dimensions. The chiral γ∗ anticommutes with the first four
γ matrices, while it commutes with the other n − 4 ones. However, cyclicity of the
matrix trace is preserved as well as the relation γ2

∗ = 1; we will expand on this in
section 2.1.

• The Thompson-Yu prescription [26], where a non-vanishing anticommutator of γ∗
with all other γ matrices is introduced. This maintains both the cyclicity of the
trace and γ2

∗ = 1 as well as Lorentz invariance. However, the expressions are much
lengthier than in the previous case and computations become rather cumbersome.

• The Kreimer et al. prescription [27, 28], where one can keep the vanishing anti-
commutator of γ∗ with all other γ matrices. However, this requires the embedding
of the four-dimensional γ-matrix algebra in an infinite-dimensional one, with the loss
of cyclicity of the trace and a complicated prescription for the evaluation of traces
containing γ∗ as a consequence.

We note that from this list, only the Breitenlohner-Maison scheme has been shown to give
mathematically consistent results to arbitrary loop orders [25, 29]. In this work we are thus
going to analyze the trace anomaly for a chiral fermion strictly following this scheme in
dimensional regularization. Apart from this point and the fact that we work consistently
in n dimensions from the beginning, our method is completely analogous to the one of
Bonora et al. [4, 5], i.e., an expansion to second order in perturbations around Minkowski
spacetime.

The article is organized as follows: In section 2 we review the definition of a Weyl
fermion in curved space. In particular, we include in section 2.1 a description of the
regularization scheme that will be employed, while in section 2.2 we perform an expansion
of the metric around flat spacetime, gµν = ηµν + κhµν . The expressions for the expansions
of the action, the stress tensor and the relevant expectation values are explicitly written
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down. The computations to first and second order in this expansion are explained in
sections 3 and 4, respectively, and the results for the trace and divergence of the stress
tensor displayed.1 We state our conclusions in section 5. Some additional computations
regarding the one- and two-argument tensorial integrals I that appear in the computation,
the analysis of the necessary counterterms and the expansion of geometrical quantities in
terms of the perturbation hµν are relegated to the appendices.

Conventions. In the following we will employ the conventions of [32], in which the met-
ric is (−,+,+, · · · ), the gamma matrices fulfill the usual Clifford algebra, i.e., {γµ, γν} =
2gµν1, and ψ̄ = iψ∗γ0. We consistently work in n dimensions in order to employ dimen-
sional regularization, and use the Breitenlohner-Maison scheme [25] for the definition of
the chiral matrix γ∗ in n dimensions. The Riemann tensor is Rσµρν = ∂ρΓσµν + · · · , and the
Ricci tensor is obtained as Rµν = Rρµρν . We use geometric units c = ~ = 1 and the totally
antisymmetric symbol normalized to ε0123 = 1. We denote (idempotent) symmetrization of
indices by parentheses, e.g., v(awb) = 1

2

(
vawb + vbwa

)
, and antisymmetrization by brack-

ets, e.g., v[awb] = 1
2

(
vawb − vbwa

)
.

2 Weyl fermions in curved space

First of all, let us introduce left-handed Weyl fermions, which are four-component fermions
satisfying

ψ = P+ψ ≡
1
2(1 + γ∗)ψ, ψ̄ = ψ̄P− ≡

1
2 ψ̄(1− γ∗) , (2.1)

where γ∗ is the chiral γ matrix satisfying γ2
∗ = 1, such that the projectors P± are idem-

potent: P2
± = P±. Since ψ̄ψ = ψ̄P+P−ψ = 0, no Dirac mass term for Weyl fermions

exists. Under a parity transformation, we have γ∗ → −γ∗, and left-handed Weyl fermions
are mapped to right-handed ones and vice versa.

To consistently define the chiral matrix γ∗ in n dimensions, we will use the
Breitenlohner-Maison scheme [25] which we are going to explain in more detail in sec-
tion 2.1, and which preserves the relation γ2

∗ = 1 such that eq. (2.1) still holds. In a curved
n-dimensional space, the action for Weyl fermions reads

S = −
∫
ψ̄γµ∇µψ

√
−g dnx = −

∫
ψ̄P−γµ∇µ(P+ψ)

√
−g dnx , (2.2)

where in the second expression we have explicitly displayed the projectors. In this expres-
sion, the covariant derivative for the fermion includes the spin connection ω,

∇µψ ≡ ∂µψ + 1
4ωµρσγ

ρσψ , (2.3)

and the curved-space γ matrices are obtained as usual from the constant flat-space ones
by introducing the vielbein, eµa, namely as γµ ≡ gµνeν

aηabγ
b. Additionally, we have

1We have used the tensor algebra suite xAct [30, 31] to perform the lengthy but straightforward tensor
algebra.
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introduced the higher-order γ matrices obtained by antisymmetrization [33], γµ1···µk ≡
γ[µ1 · · · γµk]. The spin connection ω can be expressed in terms of the vielbein [32]:

ωµρσ = ωµ[ρσ] = ηab
(
eσ
a∂[µeρ]

b − eρa∂[µeσ]
b + eµ

a∂[σeρ]
b
)
. (2.4)

From the action (2.2), one can compute the associated symmetric stress tensor [34]
(with the projectors explicitly displayed)

Tµν = 1
2 ψ̄P−γ

(µ←→∇ ν)P+ψ + 1
2g

µνψ̄P−γρ
←→
∇ ρP+ψ , (2.5)

where we have introduced ←→∇ µ ≡ ∇µ −
←−
∇µ, and

←−
∇µ acts according to ψ̄

←−
∇µ ≡ ∂µψ̄ −

1
4 ψ̄ ωµρσγ

ρσ. As is well known (and can be checked easily using that [∇µ,∇ν ]ψ =
1
4Rµνρσγ

ρσψ [32]), classically this tensor is conserved and its trace vanishes on-shell, since
the action for a Weyl fermion is conformally invariant. Furthermore, the second term in
the r.h.s. of (2.5) vanishes on-shell. As we will see the situation can change at the quantum
level, giving rise to the trace anomaly.

2.1 The Breitenlohner-Maison prescription

The main problem when dealing with dimensional regularization of chiral theories is related
to the appropriate extension of γ∗ from n = 4 to general n dimensions. This comes from
its definition in terms of the totally antisymmetric symbol ε, which is intrinsically a four-
dimensional object; in formulas, γn=4

∗ = − i
4!εµνρσγ

µγνγργσ. Indeed, a contradiction can
be explicitly seen to emerge from the following two properties, valid in n = 4 dimensions:

tr(γ∗γµγνγργσ) = −i εµνρσ tr1 , (2.6a)
{γµ, γ∗} = 0 . (2.6b)

As is well-known, if we take eq. (2.6b) as granted in general n dimensions, together with
the cyclicity of the trace and γ2

∗ = 1, it follows that

n tr γ∗ = tr(γ∗γαγα) = − tr(γαγ∗γα) = − tr(γ∗γαγα) = −n tr γ∗ (2.7)

and thus n tr γ∗ = 0, then

n tr(γ∗γµγν) = tr(γ∗γαγαγµγν) = − tr(γ∗γαγµγνγα)
= . . . = −2 tr(γ∗γνγµ) + 2 tr(γ∗γµγν)− n tr(γ∗γµγν)
= −4gµν tr γ∗ − (n− 4) tr(γ∗γµγν)

(2.8)

and thus n(n− 2) tr(γ∗γµγν) = 0, and analogously

n(n− 2)(n− 4) tr(γ∗γµγνγργσ) = 0 . (2.9)

which contradicts formula (2.6a) for n 6= 4.
The proposal of Breitenlohner and Maison [25] to solve this problem, based upon [21],

consists in splitting the n-dimensional Minkowski space in the product of a four-dimensional
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and an (n − 4)-dimensional one, and keeping the anticommutativity property (2.6b) only
for the four-dimensional subspace. That is, we consider in n dimensions the usual metric
ηµν , gamma matrices γµ and momenta pµ, and decompose them into a four-dimensional
part (denoted with an overbar) and an (n− 4)-dimensional part (denoted with a hat):2

ηµν = η̄µν + η̂µν , γµ = γ̄µ + γ̂µ , pµ = p̄µ + p̂µ , . . . (2.10)

While all objects are defined in the full n-dimensional Minkowski space, they vanish when-
ever their indices do not pertain to the corresponding subspace, such that we have for
example the following relations:

ηµ
ν η̂νρ = η̂µν η̂

ν
ρ = η̂µρ , η̂µν = η̂νµ ,

η̄µν η̂νρ = 0 , η̄µ
νpν = p̄µ , η̂µ

νγν = γ̂µ ,
(2.11)

and many more. The totally antisymmetric symbol εµνρσ is a purely four-dimensional
object: εµνρσ = ε̄µνρσ and η̂αµεµνρσ = 0. The definition of the chiral matrix γ∗ is then the
same as in four dimensions, namely

γ∗ ≡ −
i
4!εµνρσγ

µγνγργσ = − i
4!εµνρσγ

[µνρσ] . (2.12)

From this, one can easily derive the following identities [25]:

{γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2η̂µν1 , (2.13a)
η̂µ
µ = n− 4 , (2.13b)

{γµ, γ∗} = {γ̂µ, γ∗} = 2γ̂µγ∗ , (2.13c)
[γµ, γ∗] = [γ̄µ, γ∗] = 2γ̄µγ∗ , (2.13d)

γ2
∗ = 1 , (2.13e)

P±γµP∓ = P±γ̄µ , (2.13f)

where the last formula is a consequence of the definition of the projectors.
Since this definition breaks n-dimensional Lorentz covariance for chiral objects, spu-

rious non-covariant terms may appear in the calculation, which can however be canceled
with (finite) non-covariant counterterms [35–38].

2.2 Perturbative expansion around Minkowski space

In order to study the trace anomaly, we consider fluctuations hµν of the metric around
Minkowski space:

gµν = ηµν + κhµν , (2.14)

with κ a parameter that helps to keep track of the expansion order. The vielbein, the inverse
metric, etc. of course change accordingly. Choosing symmetric gauge for the vielbein [39],

2In general, one has to perform this decomposition for the indices, such that also mixed quantities can
appear. However, the Minkowski metric is diagonal in n dimensions, and no mixed metric exists.
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up to and including quadratic contributions in h they explicitly read

eµa = e(0)ρ
a

(
ηµρ −

1
2κh

µ
ρ + 3

8κ
2hµσhσρ

)
+O

(
κ3
)
, (2.15a)

eµ
a = e(0)a

ρ

(
ηµρ + 1

2κh
µρ − 1

8κ
2hµσhσ

ρ
)

+O
(
κ3
)
, (2.15b)

gµν = ηµν − κhµν + κ2hµρhρ
ν +O

(
κ2
)
, (2.15c)

√
−g = 1 + κ

2h
ρ
ρ + κ

8 (hρρhσσ − 2hρσhρσ) +O
(
κ3
)
, (2.15d)

where e(0)ρ
a = δρa is the vielbein in the background Minkowski space. It is important to

notice that in the right-hand side of (2.15a) we have used the flat metric η to raise indices,
even if we are writing them with the same Greek indices as if we had used the full metric.
This is the convention that will be employed in the following. For notational convenience,
we will also introduce a notation for the expansions in h: Given a quantity A, we set

A ≡ A(0) + κA(1) + κ2A(2) +O
(
κ3
)
. (2.16)

In particular, we will expand the vacuum expectation value (VEV) of the stress tensor in
the curved spacetime with metric g as

〈Tµν(x)〉g = 〈Tµν(x)〉(0) + κ〈Tµν(x)〉(1) + κ2〈Tµν(x)〉(2) +O
(
κ3
)
, (2.17)

where the VEV’s on the right-hand side are all computed in the flat Minkowski background
(which will always be the case in the following, except if otherwise indicated by a subindex
g like on the left-hand side).

Expanding also the action S in a free part S(0) and interactions S(1), S(2), ... between
the fermions and the perturbation hµν , the Gell-Mann-Low formula gives

〈Tµν(x)〉g =

〈
Tµν(x) exp

[
i
(
κS(1) + κ2S(2)

)]〉
〈

exp
[
i
(
κS(1) + κ2S(2)

)]〉 +O
(
κ3
)
, (2.18)

where the expectation values without suffix on the right-hand side denote expectation val-
ues in the free theory in Minkowski spacetime with action S(0), see eqs. (2.22a) and (2.23).
Expanding in κ and comparing with the expansion (2.17), we obtain

〈Tµν(x)〉(1) = i
〈
S(1)T

µν
(0)(x)

〉
, (2.19a)

〈Tµν(x)〉(2) = −1
2
〈
S2

(1)T
µν
(0)(x)

〉
+ i
〈
S(2)T

µν
(0)(x)

〉
+ i
〈
S(1)T

µν
(1)(x)

〉
. (2.19b)

We have already simplified this expression by noting that in dimensional regularization,
the VEV of a quantity which depends on just one position variable vanishes since all fields
are massless:

〈
Tµν(k)(x)

〉
= 0 =

〈
S(k)(x)

〉
for k = 0, 1, 2. Before giving the explicit form of

the coefficients, we further compactify the notation and define

Ψµν ≡ ψ̄P−γµP+∂
νψ − ∂νψ̄P−γµP+ψ , (2.20a)

Jµνρ ≡ ψ̄P−γµνρP+ψ , (2.20b)
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as well as the traces Ψ ≡ Ψµ
µ and h ≡ hµµ. In this way, we obtain the coefficients in the

expansion of the stress tensor,

Tµν(0) = 1
2
[
Ψ(µν) −Ψηµν

]
, (2.21a)

Tµν(1) = 1
4
[
2Ψhµν + hαβΨαβηµν − 2hα(µΨν)

α − hα(µΨα
ν) − Jαβ(µ∂αh

ν)
β

]
, (2.21b)

Tµν(2) = 1
16
[
4hρ(µhν)σ − 4hρσhµν + 8hα(µ

(
δν)
ρ hασ − hν)

αηρσ
)

+ 3hαρ
(
hα(µδν)

σ − hσαηµν
)]

Ψρσ + 1
16
[(

4hα(µην)ρ − ηµνhαρ
)
∂σhα

τ

+ 2hµρ∂σhντ − hασηρ(µ
(
∂ν)hα

τ − 2∂αhν)
τ + 2∂τhν)

α

)]
Jρστ ,

(2.21c)

and those corresponding to the action,

S(0) = −1
2

∫
Ψ dnx , (2.22a)

S(1) = 1
4

∫ (
hαβΨαβ − hΨ

)
dnx , (2.22b)

S(2) = 1
16

∫ [(
2hhαβ − 3hαδhβδ

)
Ψαβ +

(
2hαβhαβ − h2

)
Ψ + hα

δ∂γhβδJ
αβγ

]
dnx . (2.22c)

Note that while in n = 4 dimensions, we can dispense with some of the projectors
P± since γ∗ anticommutes with all other γ matrices, this is not possible in n dimensions.
However, the differential operator appearing in the free action S(0) (2.22a) is clearly not
invertible because of the projectors. To remedy this problem and determine the free prop-
agator, we add a free right-handed Weyl fermion P−ψ to the action [40, 41], which is also
the route followed by Bonora et al. [4, 5]. Since the stress tensor (2.21) does not depend
on this right-handed fermion [which is ensured by the projectors in eq. (2.20)], and no
interaction terms are added for it, this does not change the expectation value of the stress
tensor. Instead of (2.22a), we thus have the free action

S(0)(x) = −
∫
ψ̄γµ∂µψ dnx , (2.23)

which results in the fermion propagator

G0(x, y) = −i
〈
ψ(x)ψ̄(y)

〉
=
∫

γρkρ
k2 − i0eik(x−y) dnk

(2π)n . (2.24)

If desired, from the expansion of the action (2.22) one can derive all Feynman rules for
an expansion in Feynman diagrams. However, we will directly use the expansion (2.19)
together with Wick’s theorem to evaluate the free-theory VEV’s.

The information about chirality is stored thus in the interaction terms, in which every
fermion possesses its own projector. This is in contrast with [4, 5], where only one projector
appears in the three- or four-point interaction vertices. Both interactions are equal in
n = 4 dimensions, but not in n dimensions using the Breitenlohner-Maison scheme, and
for a consistent implementation of dimensional regularization one needs to work from the
beginning in n dimensions. This can be seen, for example, in the computation of loop
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corrections in inflation, where the contribution from logarithms of the scale factor a is
crucial to ensure de Sitter invariance of the result [42–46]. These logarithms are obtained
from the determinant of the de Sitter metric an ≈ a4[1 + (n− 4) ln a] and give a finite
contribution when multiplying the pole in n − 4, but are missed if one starts in n = 4
dimensions and only dimensionally regularizes the momentum integrations.

Lastly, consider the expressions for the trace T ≡ 〈Tµµ〉g and the divergence Dν ≡
〈∇µTµν〉g of the VEV of the stress tensor in the curved spacetime with metric g. Up to
second order, their expansion coefficients are given by

T(1)(x) = ηµν〈Tµν(x)〉(1) , (2.25a)

T(2)(x) = ηµν〈Tµν(x)〉(2) + hµν〈Tµν(x)〉(1) , (2.25b)

Dν(1)(x) = ∂µ〈Tµν(x)〉(1) , (2.25c)

Dν(2)(x) = ∂µ〈Tµν(x)〉(2) + 1
2
(
2∂ρhνµ − ∂νhρµ + δνµ∂ρh

)
〈Tµρ(x)〉(1) . (2.25d)

3 The trace anomaly at O(κ)

The first order computations are straightforward and will serve as a warm-up for the
second order ones. A direct consequence of the results in the previous section is that the
only relevant quantity at this order is the VEV

〈Ψµν(x)Ψρσ(y)〉 = tr
(
P+γ

τP−γµP+γ
λP−γρ

)
×
∫∫

(2q + p)ν(2q + p)σ (p+ q)τ
(p+ q)2 − i0

qλ
q2 − i0eip(x−y) dnp

(2π)n
dnq

(2π)n .
(3.1)

We will call this the two-point function,3 and the right-hand side has been written in a
way such that one can recognize the emergence of the tensorial integrals

Iµ1···µm(p) ≡
∫

qµ1 · · · qµm
(q2 − i0)[(q + p)2 − i0]

dnq
(2π)n . (3.2)

Using the Passarino-Veltman procedure [47], these integrals can be reduced to a product
of the scalar integral I(p) times a tensorial factor depending on the external momentum
p and the flat metric, and we collect the formulas relevant to the present computation
in appendix A. After a straightforward computation, we obtain the expression for the
two-point function

〈Ψµν(x)Ψρσ(y)〉 = tr(P+γτP−γµP+γλP−γρ)

×
∫ I(p)

4(n2 − 1)
[
−(n+ 1)pλpτΠνσ(p) + 3Π(λτ (p)Πνσ)(p)

]
eip(x−y) dnp

(2π)n
(3.3)

in terms of the projector onto the space orthogonal to the vector p:

Πµν(p) ≡ pµpν − ηµνp2 . (3.4)
3This name arises from the fact that Ψµν , upon symmetrization and subtraction of a trace, corresponds

to the flat Tµν(0) , which is sometimes used as an element in the expansion.
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3.1 The original Breitenlohner-Maison scheme

The expression (3.3) can be further simplified by computing the γ matrix trace

tr
(
P+γ

τP−γµP+γ
λP−γρ

)
= 2

(
η̄τµη̄λρ − η̄τλη̄µρ + η̄τρη̄µλ

)
− 2iετµλρ , (3.5)

where we used eq. (2.13f). According to the Breitenlohner-Maison scheme [25, 29, 35],
external momenta such as pµ (i.e., the ones not involved in the loop integration) are always
taken in the four-dimensional spacetime. Performing the contractions we obtain for the
two-point function

〈Ψµν(x)Ψρσ(y)〉 = 1
n2 − 1

∫
I(p)

[
Π̄µν(p)Π̄ρσ(p) + Π̄µσ(p)Π̄νρ(p)

+ n+ 2
2 p2η̄µρΠνσ(p) + p2η̄µρΠ̄νσ(p)− npρpµΠνσ(p)

]
eip(x−y) d4p

(2π)4

(3.6)

with
Π̄µν ≡ pµpν − η̄µνp2 = Πµν + η̂µνp2 . (3.7)

For the (n-dimensional) trace, we obtain

〈Ψµν(x)Ψ(y)〉 = ηρσ〈Ψµν(x)Ψρσ(y)〉 = n− 4
2(n2 − 1)

∫
I(p) p2Π̄µν(p)eip(x−y) d4p

(2π)4 , (3.8a)

〈Ψ(x)Ψρσ(y)〉 = n− 4
2(n2 − 1)

∫
I(p) p2Π̄ρσ(p)eip(x−y) d4p

(2π)4 , (3.8b)

〈Ψ(x)Ψ(y)〉 = − 3(n− 4)
2(n2 − 1)

∫
I(p) (p2)2eip(x−y) d4p

(2π)4 , (3.8c)

and taking all together the regularized expression for the first-order contribution to the
VEV of the stress tensor follows:

〈Tµν(x)〉reg
(1) = i

8(n2 − 1)

∫∫
I(p)

[
Π̄µν(p)Π̄ρσ(p)− (n− 1)Π̄ρ(µ(p)Π̄ν)σ(p)

− n− 4
2 p2

(
η̄ρ(µΠ̄ν)σ(p) + Π̄µν(p)η̄ρσ + ηµνΠ̄ρσ(p) + 3ηµν η̄ρσp2

)]
× eip(x−y) d4p

(2π)4hρσ(y) d4y ,

(3.9)

where also the external field hρσ must be taken purely four-dimensional [25, 29, 35]. Due
to the breaking of n-dimensional Lorentz covariance in the Breitenlohner-Maison scheme,
this regularized stress tensor is now neither conserved nor traceless. Instead, we obtain

T reg
(1) (x) = ηµν〈Tµν(x)〉reg

(1)

= − i(n− 4)
16(n+ 1)

∫∫
I(p) p2

[
Π̄ρσ(p) + 3η̄ρσp2

]
eip(x−y) d4p

(2π)4hρσ(y) d4y
(3.10)

and

Dνreg, (1)(x) = ∂µ〈Tµν(x)〉reg
(1) = n− 4

32(n2 − 1)

∫∫
I(p) p2

×
[
pρΠ̄νσ(p) + 2pνΠ̄ρσ(p) + 6pν η̄ρσp2

]
eip(x−y) d4p

(2π)4hρσ(y) d4y ,

(3.11)
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where an overall coefficient (n−4) has appeared, indicating that this can be fixed by a finite
renormalization. Of course, we first have to renormalize the VEV of the stress tensor itself,
for which we need the explicit expression of the scalar integral I(p). This is a standard
computation with result [48, 49]

I(p) = i
16π2

[
N + 2− ln

(
p2 − i0
µ2

)]
+O(n− 4) , (3.12)

where µ is a reference scale and

N ≡ − 2
n− 4 − γ − log

(
µ2

4π

)
. (3.13)

We renormalize in the MS scheme, which is defined by subtracting N only and setting all
explicit factors of n in the integrand (3.9) to 4. This results in

〈Tµν(x)〉div
(1) = − N

120 · 16π2

∫∫ [
Π̄µν(p)Π̄ρσ(p)− 3Π̄ρ(µ(p)Π̄ν)σ(p)

]
× eip(x−y) d4p

(2π)4hρσ(y) d4y

= − N
120 · 16π2

(
6∇̄2R̄µν − 2∇̄µ∇̄νR̄− ḡµν∇̄2R̄

)
(1)

(x) ,

(3.14)

where to arrive at the second expression we traded the p variables for derivatives acting
on h and compared the resulting expression with the expansions of geometrical quantities
given in appendix C. We leave to appendix B the proof that this divergent part of the
stress tensor VEV (together with the second-order result) corresponds to a counterterm
that can be added to the action; the renormalized stress tensor VEV is then given by

〈Tµν(x)〉ren
(1) = 〈Tµν(x)〉reg

(1) − 〈T
µν(x)〉div

(1)

= − 1
120 · 16π2

∫∫ [46
15 − ln

(
p2 − i0
µ2

)]

×
[
Π̄µν(p)Π̄ρσ(p)− 3Π̄µ(ρ(p)Π̄σ)ν(p)

]
eip(x−y) d4p

(2π)4hρσ(y) d4y

− 1
120 · 16π2

∫∫ [
p2
[
η̄ρ(µΠ̄ν)σ(p) + Π̄µν(p)η̄ρσ + η̄µνΠ̄ρσ(p) + 3η̄µν η̄ρσp2

]
+ 2Π̄ρ(µ(p)Π̄ν)σ(p)

]
eip(x−y) d4p

(2π)4hρσ(y) d4y , (3.15)

where everything is now in four dimensions. While the terms on the first line are both
conserved and traceless, the terms on the second line are not. However, since they are
local, they can be removed by a further finite renormalization. Namely, for the terms in
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brackets (without the prefactor) we obtain

2∂µ∂ν∂ρ∂σhρσ(x) + ∂µ∂ν∂2h(x)− 3∂2∂(µ∂ρh
ν)ρ(x)

+ ∂2
[
η̄µν∂ρ∂σhρσ(x) + ∂2hµν(x) + η̄µν∂2h(x)

]
= 1

2
δ

δhµν(x)

∫ [
∂2hρσ∂2hρσ +

(
∂2h

)2
+ 3∂ρhρα∂2∂σhσα

+ 2∂2h∂ρ∂σh
ρσ + 2(∂ρ∂σhρσ)2

]
dny ,

(3.16)

such that adding this term (with the correct prefactor) to the action, we can completely
cancel the terms on the second line of the first-order VEV (3.15), obtaining a conserved
and traceless stress tensor at first order:

T ren
(1) (x) = 0 = Dνren, (1)(x) . (3.17)

Nevertheless, the finite counterterms (3.16) are not covariant, as can be easily checked by
comparing them with the expansions of geometrical quantities given in appendix C.

3.2 The modified Breitenlohner-Maison scheme

Since in the Breitenlohner-Maison scheme, the quantum action principle holds [25, 29, 35], it
follows from the results of algebraic renormalization (both in flat [50, 51] and curved [52–54]
spacetimes) that it is always possible to add finite counterterms to the action to cancel
spurious non-covariant terms that arise from the breaking of n-dimensional Lorentz covari-
ance. In this way, the same criterion for the appearance of anomalies holds as in any other
consistent scheme, namely that anomalies are non-trivial solutions of the Wess-Zumino
consistency conditions [55], or more general, elements of a certain cohomology class of the
BRST differential [50, 51, 56], which for diffeomorphisms is empty in four dimensions [57]
(except for possible topological terms that are relevant here).

Therefore, and as suggested in [58], it is convenient to modify the Breitenlohner-Maison
scheme in the parity-even sector since the axial anomaly (as well as a possible Pontryagin
density in the trace anomaly) are odd under parity transformations. Namely, for traces
containing an even number of the chiral matrix γ∗, one may use the naive anticommutation
rules {γµ, γ∗} = 0 for all γ matrices, together with γ2

∗ = 1 and cyclicity of the trace.4
Applied to our situation, this means that instead of the result (3.5) for the trace, we use

tr
(
P+γ

τP−γµP+γ
λP−γρ

)
= 2

(
ητµηλρ − ητληµρ + ητρηµλ

)
− 2iετµλρ , (3.18)

where the four-dimensional metrics η̄µν in the parity-even part have been replaced by the
n-dimensional ones ηµν . However, in the parity-odd part nothing has changed, and the

4We note that this in fact agrees with the prescription used by Bonora et al. for the parity-even part ([4],
footnote 4). What we do not agree with is the treatment of the parity-odd part, where one has to work
from the beginning consistently in n dimensions, as explained in section 2.2 after eq. (2.24), and thus has
to employ chiral projectors at every interaction vertex.
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totally antisymmetric symbol ετµλρ is still purely four-dimensional. Instead of eq. (3.6),
we obtain

〈Ψµν(x)Ψρσ(y)〉 =
∫ I(p)
n2 − 1

[
2Πµ(ν(p)Πσ)ρ(p)− nΠµρ(p)Πνσ(p)

]
eip(x−y) dnp

(2π)n , (3.19)

which now has vanishing trace:

〈Ψµν(x)Ψ(y)〉 = ηµν〈Ψµν(x)Ψρσ(y)〉 = 0 = 〈Ψ(x)Ψρσ(y)〉 . (3.20)

It follows that the regularized VEV of the stress tensor

〈Tµν(x)〉reg
(1) = i

8(n2 − 1)

∫∫
I(p)

[
Πµν(p)Πρσ(p)− (n− 1)Πρ(µ(p)Πν)σ(p)

]
× eip(x−y) dnp

(2π)nhρσ(y) dny
(3.21)

is now both conserved and traceless as a consequence of the n-dimensional projector
structure,

T reg
(1) (x) = 0 = Dνreg, (1)(x) . (3.22)

Using again the MS scheme, instead of eq. (3.14) we thus obtain the divergent part of
the stress tensor VEV

〈Tµν(x)〉div
(1) = − N

120 · 16π2

∫∫ [
Πµν(p)Πρσ(p)− 3Πρ(µ(p)Πν)σ(p)

]
× eip(x−y) dnp

(2π)nhρσ(y) dny

= − N
120 · 16π2

(
6∇2Rµν − 2∇µ∇νR− gµν∇2R

)
(1)

(x) ,

(3.23)

which only differs from eq. (3.14) by the fact that all tensors are now taken in n dimensions.
Finally, the renormalized stress tensor VEV in the modified Breitenlohner-Maison scheme
is given by

〈Tµν(x)〉ren
(1) = 〈Tµν(x)〉reg

(1) − 〈T
µν(x)〉div

(1)

= − 1
120 · 16π2

∫∫ [12
5 − ln

(
p2 − i0
µ2

)]

×
[
Πµν(p)Πρσ(p)− 3Πρ(µ(p)Πν)σ(p)

]
eip(x−y) d4p

(2π)4hρσ(y) d4y

− 1
180 · 16π2

∫∫
Πµν(p)Πρσ(p)eip(x−y) d4p

(2π)4hρσ(y) d4y .

(3.24)

From the projectors, one sees that the first term is both conserved and traceless, while the
second term is conserved but not traceless. Concretely, we obtain

T ren
(1) (x) = 1

60(4π)2

[
∇2R(x)

]
(1)
, (3.25a)

Dνren, (1)(x) = 0 . (3.25b)
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This agrees with the result for a Majorana fermion or half the result for a Dirac fermion
in dimensional regularization, see for example [49]. Of course, as is well known, the term
in the trace anomaly proportional to ∇2R can be canceled by adding a term proportional
to R2 to the action, such that we have agreement with the original Breitenlohner-Maison
scheme up to the allowed freedom.

3.3 The anomaly definition of Godazgar and Nicolai

Lastly, we want to compare our computation of the anomalous trace with the definition of
Godazgar and Nicolai [49, 59]. They postulate that the trace anomaly is given in general by

A ≡ lim
n→4

(
gµν〈Tµν(x)〉 − 〈gµνTµν(x)〉

)
, (3.26)

where the expectation values are the dimensionally regularized ones. This means that in
the first term, with the metric outside the expectation value, the metric should be taken
in n = 4 dimensions, while for the second term the n-dimensional metric enters. At first
order, this results in

Aorig
(1) = lim

n→4
(η̄µν − ηµν)〈Tµν(x)〉reg

(1) = − lim
n→4

η̂µν〈Tµν(x)〉reg
(1)

= lim
n→4

i(n− 4)2

16(n2 − 1)

∫∫
I(p)p2

[
Π̄ρσ(p) + 3η̄ρσp2

]
eip(x−y) d4p

(2π)4hρσ(y) d4y = 0
(3.27)

with the regularized VEV (3.9) using the original Breitenlohner-Maison scheme, and

Amod
(1) = − lim

n→4
η̂µν〈Tµν(x)〉reg

(1)

= lim
n→4

i(n− 4)
8(n2 − 1)

∫∫
I(p)p2Πρσ(p) eip(x−y) d4p

(2π)4hρσ(y) d4y

= 1
60 · 16π2

[
∇2R

]
(1)

(3.28)

with the regularized VEV (3.21) using the modified Breitenlohner-Maison scheme.
We see that in both cases, a covariant result is obtained, and that the non-covariant

finite counterterms that one needs in the original Breitenlohner-Maison scheme automati-
cally cancel out. Nevertheless, the result between different schemes only agrees up to the
usual freedom of adding finite covariant counterterms, as expected. We further note that
since the renormalized stress tensor VEV is four-dimensional, we have η̂µν〈Tµν(x)〉ren

(1) = 0
and thus can also write

A(1) = lim
n→4

η̂µν〈Tµν(x)〉div
(1) . (3.29)

It follows that the difference between the results (3.27) and (3.28) comes about because
of the different results for the divergent part in the two schemes, either using purely
four-dimensional tensors in the original Breitenlohner-Maison scheme (3.14) or using n-
dimensional ones in the modified scheme (3.23), see appendix B.
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4 The trace anomaly at O(κ2)

At second order in h the number of terms contributing to the stress tensor VEV increases
substantially. In order to avoid a further proliferation of terms, and since the result for
the parity-even part of the stress tensor VEV is not disputed, we will use the modified
Breitenlohner-Maison scheme. We classify the contributions to 〈Tµν(x)〉(2) into three cat-
egories, considering their structure in terms of the variables defined in (2.20): those which
contain two Ψ’s, those with one Ψ and one J , and finally those with three Ψ’s. Using the
computations of the previous section, we can easily give a result for the terms that fall
either into the first or second category. After doing so, we will describe a way to perform
the calculations for those in the third category, which we have done using the xAct tensor
algebra suite [30, 31], and give only the result for the divergence and trace.

4.1 The Ψ2 contribution

From the expansion of the stress tensor VEV (2.19), we see that there are contributions
involving two Ψ’s both from

〈
S(2)T

µν
(0)(x)

〉
and

〈
S(1)T

µν
(1)(x)

〉
. Using formula (3.19) together

with a reshuffling of the terms in order to render the expression readable, after some
straightforward manipulations we arrive at the following expression for the regularized
contribution to the VEV:

〈Tµν(x)〉reg
(2),Ψ2 = 1

2hαβ(x)ηµν
〈
Tαβ(x)

〉reg

(1)
− 3

2h
(µ
α(x)

〈
T ν)α(x)

〉reg

(1)

+ i
32(n2 − 1)

∫∫
I(p)

[
(n− 1)Πρ(µΠν)σ −ΠµνΠρσ

]
eip(x−y) dnp

(2π)n

× [3hαρ(y)hασ(y)− 2h(y)hρσ(y)] dny .

(4.1)

Because of the projectors in the second term, this term does not contribute to the trace
and divergence, and we obtain directly

ηµν〈Tµν(x)〉reg
(2),Ψ2 = n− 3

2 hαβ(x)
〈
Tαβ(x)

〉reg

(1)
, (4.2a)

∂µ〈Tµν(x)〉reg
(2),Ψ2 = 1

2∂µ
[
hαβ(x)ηµν

〈
Tαβ(x)

〉reg

(1)
− 3h(µ

α(x)
〈
T ν)α(x)

〉reg

(1)

]
. (4.2b)

4.2 The ΨJ contribution

The computation of the two-point function involving one Ψ and one J goes along the
previous lines. One easily arrives at the following expression:

〈
Ψµν(x)Jαβγ(y)

〉
= i tr

(
γµP+γ

λP−γαβγP+γ
τP−

)
×
∫∫

(2q + p)ν (p+ q)τ
(p+ q)2 − i0

qλ
q2 − i0eip(x−y) dnp

(2π)n
dnq

(2π)n ,
(4.3)
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where the integration over q can again be done using the tensorial integrals (3.2) and
results in 〈

Ψµν(x)Jαβγ(y)
〉

= i
2(n− 1) tr

(
γµP+γ

λP−γαβγP+γ
τP−

)
×
∫
I(p) δν[τpλ]p

2 eip(x−y) dnp
(2π)n .

(4.4)

For the γ matrix trace we compute in the modified Breitenlohner-Maison scheme

tr
(
γµP+γ

λP−γαβγP+γ
τP−

)
= 4

(
ηατηβ[ληµ]γ + ηαµηβ[τηλ]γ + ηαληβ[µητ ]γ

)
+ 1

2 tr
(
γµγ∗γ̄

λγ̄αβγ γ̄τ
) (4.5)

using formula (2.13f), where the parity-odd contribution is given by

tr
(
γµγ∗γ̄

λγ̄αβγ γ̄τ
)

= 12i
(
ελτ [αβ η̄γ]µ + εµλ[αβ η̄γ]τ + εµτ [αβ η̄γ]λ

)
+ 4i

(
εαβγµη̄λτ + εαβγλη̄τµ − εαβγτ η̄λµ

)
.

(4.6)

However, unlike the parity-odd contribution to the trace appearing in the contribution of
the VEV of two Ψ’s (3.5), this expression is not unique because of dimension-dependent
identities [60]. Namely, for purely four-dimensional tensors, antisymmetrization over five or
more indices obviously gives a vanishing result. Therefore, adding the vanishing expression

− 20i
(
ε[αβγµη̄τ ]λ + ε[αβγµη̄λ]τ + ε[αβγλη̄τ ]µ

)
(4.7)

to the result (4.6) we obtain the simpler form

tr
(
γµγ∗γ̄

λγ̄αβγ γ̄τ
)

= 4i
(
2εαβγ(τ η̄λ)µ − εαβγµη̄λτ

)
. (4.8)

Since the p integral of the VEV (4.4) is antisymmetric and the trace (4.8) symmetric
in τλ, there is no parity-odd contribution to the VEV of one Ψ and one J . The parity-even
contribution reads〈

Ψµν(x)Jαβγ(y)
〉

= − 6i
(n− 1)

∫
I(p) ηµ[αpβηγ]νp2 eip(x−y) dnp

(2π)n , (4.9)

and is antisymmetric in µν. However, the contribution of (4.9) to the stress tensor VEV
only involves the symmetric part Ψ(µν) at second order: from eq. (2.19) we see that there
is a contribution from

〈
S(2)T

µν
(0)(x)

〉
, where S(2) (2.22c) involves Jαβγ and Tµν(0) (2.21a) the

symmetric part Ψ(αβ), while for the contribution from
〈
S(1)T

µν
(1)(x)

〉
the action S(1) (2.22b)

involves the symmetric part Ψ(αβ) and the stress tensor Tµν(1)(x) (2.21b) involves Jαβγ .5
We conclude that the contribution from the VEV of one Ψ and one J to the stress

tensor vanishes:

〈Tµν(x)〉reg
(2),ΨJ = 0 . (4.10)

5The first possible contribution of the antisymmetric part Ψ[µν] is at third order from
〈

S(2)T
µν
(1)(x)

〉
.
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4.3 The Ψ3 contribution

We arrive therefore to the most challenging computation of this article, the contribution
of three Ψ’s in the term

〈
S2

(1)T
µν
(0)(x)

〉
(2.19). Even if the computations involved are not

necessarily conceptually complex, they are rather lengthy (∼ 104 − 105 terms), and even
with computer algebra take quite some time to finish. Let us begin by giving a concrete
expression for the three-point contribution:〈

Ψµν(x)Ψαβ(y)Ψσρ(z)
〉

= −i
{

tr
[
γµP+γ

τP−γσP+γ
δP−γαP+γ

λP−
]

+ tr
[
γµP+γ

λP−γαP+γ
δP−γσP+γ

τP−
]}

×
∫∫∫ (q − k)τqδ(q − p)λ(2q − k)ρ(2q − p)β(2q − p− k)ν

[(q − k)2 − i0][(q − p)2 − i0][q2 − i0]

× e−ip(x−y)eik(x−z) dnp
(2π)n

dnq
(2π)n

dnk
(2π)n . (4.11)

We first compute the γ matrix traces using the modified Breitenlohner-Maison scheme,
which results in

tr
[
γµP+γ

τP−γσP+γ
δP−γαP+γ

λP−
]

+ tr
[
γµP+γ

λP−γαP+γ
δP−γσP+γ

τP−
]

= 4
[
2ηα[λ

(
2ηµ][τησ]δ + ηµ]δηστ

)
+ 2ηα[δ

(
2ησ][ληµ]τ + ησ]τηλµ

)
+ ηατ

(
2ηδ[σηµ]λ + ηδληµσ

)]
+ 4iε[δλστ η̄α]µ .

(4.12)

At first sight, one could think that we have found one additional contribution of odd parity.
However, the corresponding term involves antisymmetrization over five indices, and since
the involved tensors are purely four-dimensional, this contribution again vanishes.

For the parity-even contribution, we first note that by taking either a trace or diver-
gence of eq. (4.11) and performing the contractions with the metrics of eq. (4.12), the
integrals reduce to the tensorial integrals (3.2), of argument p, k or p − k, and can be
expressed in terms of the two-point function (3.19). After a laborious but straightforward
computation, we find that the regularized contributions to the trace and the divergence of
the stress tensor are given by

ηµν〈Tµν(x)〉reg
(2),Ψ3 = −n(n− 1)

8 hρσ(x)〈T ρσ(x)〉reg
(1) , (4.13a)

∂µ〈Tµν(x)〉reg
(2),Ψ3 = −1

2∂ρh(x)〈T νρ(x)〉reg
(1) + 3

4∂
ρ
[
hρσ(x)〈T νσ(x)〉reg

(1)

]
− 1

4∂ρhσ
ν〈T ρσ(x)〉reg

(1) −
1
2hρσ(x)∂ν〈T ρσ(x)〉reg

(1) .
(4.13b)

It remains to compute the divergent part of eq. (4.11) in order to obtain the trace and
divergence of the renormalized stress tensor.

4.3.1 Isolating the divergences in the Ψ3 contribution

As previously said, there is a large number of terms involved in the computation, which
renders it somewhat unfeasible. The experience gained in the preceding sections invites us
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to define the two-argument tensorial integrals

Iµ1···µm(p, k) ≡
∫

qµ1 · · · qµm
(q2 − i0)[(q − k)2 − i0][(q − p)2 − i0]

dnq
(2π)n , (4.14)

which one could evaluate using the results of Godazgar and Nicolai [49], and extract the
divergent part. However, since their approach leads to spurious kinematical singularities
(terms of the form

[
p2k2 − (pk)2]−1, which only can cancel at the very end), it is more

useful for our purposes to proceed in a different way.
As already noted in [49], if one is only interested in the divergent part one can pro-

ceed as follows: by power counting, I(p, k) and Iµ(p, k) are finite in n = 4 dimensions,
while Iµν(p, k) is logarithmically divergent. The divergence of Iµν(p, k) must therefore be
proportional to ηµν , and (again by power counting) the divergences of Iµ1···µm(p, k) must
be proportional to a polynomial in p and k of order m − 2. We then use the important
property (which was already mentioned) that the partial trace of Iµ···(p, k) is given by
combinations of the one-argument tensorial integrals defined in eq. (3.2):

ηµν Iµνρ···(p, k) =
∫

qρ · · ·
[(q − p)2 − i0]2[(q − k)2 − i0]2

dnq
(2π)n

= Iρ···(p− k) + pρ I ···(p− k) + · · · ,
(4.15)

where we have shifted the integration variable q → q+ p. Together with the manifest sym-
metries Iµ1···µm(p, k) = I(µ1···µm)(p, k) = Iµ1···µm(k, p) which can be read off from (4.14),
this relation suffices to uniquely determine the divergent part, which is seen to be a com-
bination of the one-argument tensorial integrals (3.2).

However, we would like to compute the full expectation value which also includes
additional finite parts, and for which we need to evaluate the two-argument tensorial in-
tegrals (4.14) explicitly. From eq. (4.15), it follows that these additional finite parts are
traceless. To compute the integrals (4.14), we introduce Feynman parameters [48] to com-
bine the denominators and obtain after the shift q → q + yp+ xk that

Iµ1···µm(p, k) = 2
∫ 1

0

∫ 1−y

0

∫ (q + yp+ xk)µ1 · · ·
(q2 +ME − i0)3

dnq
(2π)n dx dy , (4.16)

where

ME ≡ y(1− y)p2 + x(1− x)k2 − 2xy(p · k) . (4.17)

The integral over q can now be done in the standard way [48] by first reducing them
to scalar ones. In particular, integrals that contain an odd number of q’s vanish by the
symmetry q → −q, and the tensorial structure of the integrals with an even number of q’s
is by rotational invariance obtained with the replacements

qµqν → 1
n
ηµνq2 , (4.18a)

qµqνqρqσ → 3
n(n+ 2)η

(µνηρσ)q4 , (4.18b)

qµqνqρqσqαqβ → 15
n(n+ 2)(n+ 4)η

(µνηρσηαβ)q6 . (4.18c)
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However, any power of q2 cancels the one in the denominator of (4.14), such that a one-
argument integrals results that contributes to the divergent part. It is thus clear that the
additional finite part is given by the traceless part (denoted by a subscript “tr”)

[Iµ···(p, k)]tr = 2
∫ 1

0

∫ 1−y

0

∫ [(yp+ xk)µ · · ·]tr
(q2 +ME − i0)3

dnq
(2π)n dx dy , (4.19)

which by power counting is indeed seen to be finite in n = 4 dimensions. The q integral
can then be done using [48]∫ 1

(q2 +ME − i0)a
dnq

(2π)n = i
(4π)n2

Γ
(
a− n

2
)

Γ(a) (ME − i0)
n
2−a , (4.20)

and the limit n → 4 can be taken, and we see that the result can be expressed using the
parameter integrals

Fab(k, p) ≡
∫ 1

0

∫ 1−y

0

xayb

ME − i0 dx dy . (4.21)

To our knowledge, these integrals were first introduced in [61] in the study of axial anomalies
(denoted there by Ist [61], eq. (18)), and we note that they satisfy several relations which
are given (and proven) in appendix E. Taking all together, for the first three two-argument
integrals we obtain

I(p, k) = i
16π2F00(k, p) , (4.22a)

Iµ(p, k) = i
16π2 [F10(k, p)kµ + F01(k, p)pµ] , (4.22b)

Iµν(p, k) = ηµν

n
I(p− k) + i

16π2

[
F20(k, p)kµkν + 2F11(k, p)k(µpν) + F02(k, p)pµpν

]
tr
,

(4.22c)

and the remaining integrals relevant for this work are given in appendix D. In this way, the
computation is reduced to around 103 terms, and all kinematical singularities are avoided.
Since the final result is not really inspiring, we won’t include its explicit expression in the
text; the interested reader can consult the ancillary Mathematica file.

4.4 The complete O
(
κ2) contribution

At this point we have all the necessary ingredients to compute the full second-order con-
tribution to the trace and divergence of the stress tensor VEV. Remembering to include
the terms in eqs. (2.25b) and (2.25d) explicitly proportional to h, we get a regularized
expression which is both traceless and divergence-free at second order:

T reg
(2)(x) = ηµν

[
〈Tµν(x)〉reg

(2),Ψ2 + 〈Tµν(x)〉reg
(2),ΨJ + 〈Tµν(x)〉reg

(2),Ψ3

]
+ hµν〈Tµν(x)〉reg

(1)

= 0 , (4.23a)

Dνreg, (2)(x) = ∂µ
[
〈Tµν(x)〉reg

(2),Ψ2 + 〈Tµν(x)〉reg
(2),ΨJ + 〈Tµν(x)〉reg

(2),Ψ3

]
+ 1

2
[
2∂ρhνµ(x)− ∂νhρµ(x) + δνµ∂ρh(x)

]
〈Tµρ(x)〉reg

(1) = 0 ,
(4.23b)
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where we have used the results (4.2a), (4.10) and (4.13a) for the trace and (4.2b), (4.10)
and (4.13b) for the divergence.

As done at linear order in h, we renormalize using the MS scheme, subtracting the
contributions proportional to the divergent part N of the scalar integral (3.12). Identifying
once more the various terms as expansions of geometrical quantities by comparing with
the results of appendix C, we obtain

〈Tµν(x)〉div
(2) = N

1440(4π)2

[
8gµνRαβRαβ + 56RµαRνα + 20RµνR− 5gµνR2

+ 7gµνRαβγδRαβγδ − 88RαβRµανβ − 28RµαβγRναβγ
− 72∇2Rµν + 12gµν∇2R+ 24∇µ∇νR

]
(2)
,

(4.24)

and the renormalized stress tensor VEV

〈Tµν(x)〉ren
(2) = 〈Tµν(x)〉reg

(2) − 〈T
µν(x)〉div

(2) . (4.25)

From this expression and eq. (4.23), the trace and divergence of the renormalized stress
tensor follow immediately. In terms of the Weyl tensor Cµνρσ and the four-dimensional
Euler density E4, which in four dimensions satisfy

CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν + 1
3R

2 , (4.26a)

E4 = RµνρσRµνρσ − 4RµνRµν +R2 , (4.26b)

our results are exactly half of the trace anomaly for the Dirac spinor [49]

T ren
(2) (x) = 1

16 · 45(4π)2

(
−11E4 + 18CµνρσCµνρσ + 12∇2R

)
(2)
, (4.27a)

Dνren, (2)(x) = 0 . (4.27b)

5 Conclusions

We have computed the renormalized stress tensor expectation value for chiral fermions
using dimensional regularization, up to second order in perturbations around flat spacetime.
Employing the Breitenlohner-Maison scheme [25] for the treatment of the chiral matrix γ∗,
we did not find any parity-odd contributions to the expectation value. Therefore, also the
trace anomaly does not contain any parity-odd term proportional to the Pontryagin density,
and the result for the trace anomaly is half the one of a Dirac fermion, as also confirmed
using other methods [7–9]. This result reaffirms the validity of the equivalence principle for
the coupling of matter to gravity in the present case, since there is no difference between
left- or right-handed fermions.

For our result, the use of dimension-dependent identities [60] was crucial. As empha-
sized in [27], for γ matrix traces containing one chiral matrix γ∗ and up to four other γ
matrices (in four dimensions), any prescription gives the correct result. Only for traces
containing at least six other γ matrices various features of the concrete prescription (such
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as the four-dimensionality in the Breitenlohner-Maison scheme, or the non-cyclicity of the
trace for the prescription of Kreimer et al. [27, 28]) become relevant for practical computa-
tions. This can also be seen in our computation, where at linear order in h the parity-odd
contribution to the γ matrix trace (3.5) is unique (proportional to the totally antisym-
metric symbol ε), while at second order this contribution can take various superficially
different forms such as (4.6) or (4.8). However, strictly four-dimensional identities (stem-
ming from the vanishing of terms that are antisymmetrized in five indices) show that all
these forms are equal, since in the Breitenlohner-Maison scheme all involved tensors are
purely four-dimensional and these identities are applicable.

As an extension of the present computation, we plan to reproduce in a future pub-
lication the Kimura-Delbourgo-Salam anomaly [62, 63], the anomalous divergence of the
axial current jµ∗ = iψ̄γµγ∗ψ in a gravitational field, by a full computation of its expectation
value in the Breitenlohner-Maison scheme. The anomaly takes the form

∇µ〈jµ∗ 〉 = 1√
−g

∂µ
(√
−g〈jµ〉

)
= 1

384π2 ε
µνρσRµναβRρσ

αβ , (5.1)

where εµνρσ = εµνρσ/
√
−g is the Levi-Civita tensor. However, in our case the following

happens: first, for a left-handed Weyl fermion we have γ∗ψ = ψ (2.1) and thus jµ∗ = jµ

with the gauge current jµ = iψ̄γµψ.6 Second, the Pontryagin density is a total derivative,
and to second order in the expansion around flat spacetime we have using the expansions
of appendix C

εµνρσRµναβRρσ
αβ = ∂µ

(
4κ2εµνρσ∂[αhβ]ν∂

α∂ρhσ
β
)

+O
(
κ3
)
. (5.2)

It thus seems that one could cancel this anomaly by adding

− 1
96π2κ

2Aµε
µνρσ∂[αhβ]ν∂

α∂ρhσ
β +O

(
κ3
)

(5.3)

to the action, changing in this way the current jµ = jµ∗ , since in the Breitenlohner-Maison
scheme non-covariant counterterms are allowed and are actually necessary: see eq. (3.16).
However, such a term changes also the stress tensor, and in particular its trace

T → T + κ

192π2∂α(Fρσερσµν∂νhµα) +O
(
κ2
)

(5.4)

and divergence

Dν → Dν + κ

192π2∂α
(
Fρσε

ρσµβ∂[ν∂µhβ
α]
)

+O
(
κ2
)
. (5.5)

Therefore, one would have to compute also the contribution from a background gauge field
to the stress tensor expectation value. Demanding that the stress tensor be conserved
and have a gauge-invariant trace anomaly will then fix unambiguously also the Kimura-
Delbourgo-Salam anomaly (5.1).

6This is of course the reason why the axial/chiral anomalies, which are associated with a global symmetry
and thus physically harmless for theories involving Dirac fermions, become disastrous for chiral fermions,
because then they destroy the gauge symmetry of the theory (whose interactions must involve conserved
currents).
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A The tensorial integrals I(p)

For completeness, we give here the explicit expressions for the tensorial integrals defined
in eq. (3.2) that are relevant for the present computation. More information can be found,
e.g., in [48]; the result for the scalar integral I(p) was given in eq. (3.12).

Iµ(p) = −1
2p

µ I(p) , (A.1a)

Iµν(p) = 1
4(n− 1)

[
npµpν − ηµνp2

]
I(p) , (A.1b)

Iµνρ(p) = − 1
8(n− 1)

[
(n+ 2)pµpνpρ − 3p2η(µνpρ)

]
I(p) , (A.1c)

Iµνρσ(p) = 1
16(n− 1)(n+ 1)

[
(n+ 4)(n+ 2)pµpνpρpσ

− 6(n+ 2)p2η(µνpρpσ) + 3(p2)2η(µνηρσ)
]
I(p) ,

(A.1d)

Iµνρσα(p) = − 1
32(n− 1)(n+ 1)(n+ 2)

[
(n+ 6)(n+ 4)(n+ 2)pµpνpρpσpα

− 10(n+ 4)(n+ 2)p2η(µνpρpσpα) + 15(n+ 2)(p2)2η(µνηρσpα)
]
I(p) .

(A.1e)

We note that these expressions are uniquely determined by the tracelessness condition
ηµν Iµν···(p) = 0, the symmetry Iµ1···µm(p) = I(µ1···µm)(p), and the contraction

2pµ Iµν···(p) = −p2 Iν···(p) , (A.2)

all of which follow directly from the definition (3.2) by using the fact that scaleless integrals
(with only a single power in the denominator) vanish in dimensional regularization [22]. In
fact, one can easily give the general result [48]:

Iµ1···µm(p) = (−1)m
Γ(n− 1)Γ

(
n−2

2 +m
)

2Γ(n− 2 +m)Γ
(
n
2
) [pµ1 · · · pµm ]tr I(p) , (A.3)

where the subscript “tr” denotes the traceless part, given by

[pµ1 · · · pµm ]tr =
[m/2]∑
r=0

(−1)rm!
4rr!(m− 2r)!

Γ
(
n−2

2 +m− r
)

Γ
(
n−2

2 +m
)

× (p2)rη(µ1µ2 · · · ηµ2r−1µ2rpµ2r+1 · · · pµm) .

(A.4)
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B On the existence of suitable counterterms

Summing the results (3.23) at first order and (4.24) at second order, we have

〈Tµν(x)〉div = N
1440(4π)2

[
8gµνRαβRαβ + 56RµαRνα + 20RµνR− 5gµνR2

+ 7gµνRαβγδRαβγδ − 88RαβRµανβ − 28RµαβγRναβγ
− 72∇2Rµν + 12gµν∇2R+ 24∇µ∇νR

]
+O

(
κ3
)
,

(B.1)

and want to show that this can be canceled by a local counterterm.
With the variations [31]

δ
(
RµνρσRµνρσ

√
−g
)

= −
√
−g
[
2RµαβγRναβγ −

1
2R

αβγδRαβγδg
µν + 4Rρµσν∇ρ∇σ

]
δgµν ,

(B.2a)

δ
(
RµνRµν

√
−g
)

= −
√
−g
[
2RµρRνρ −

1
2R

ρσRρσg
µν +Rρσgµν∇ρ∇σ

− 2Rµρ∇ν∇ρ +Rµν∇2
]
δgµν ,

(B.2b)

δ
(
R2√−g

)
= −
√
−g
[
2RµνR− 1

2R
2gµν − 2R∇µ∇ν + 2Rgµν∇2

]
δgµν , (B.2c)

performing integration by parts and using the second (contracted) Bianchi identities

∇µRµνρσ = 2∇[ρRσ]ν , ∇µRµν = 1
2∇νR , (B.3)

we obtain

〈Tµν(x)〉div = N
720(4π)2

1√
−g

δ

δgµν(x)

∫ (
7RµνρσRµνρσ + 8RµνRµν − 5R2

)√
−g dnx ,

(B.4)
which is indeed a local term that can be canceled by adding its negative to the action.

Consider now the difference between the divergent parts in the original (3.14) and
modified (3.23) Breitenlohner-Maison scheme,7 which reads

〈Tµν(x)〉div,mod
(1) − 〈Tµν(x)〉div,orig

(1) = N
120 · 16π2 η̂

µν
∫∫

Π̄ρσ(p)p2eip(x−y) d4p

(2π)4hρσ(y) d4y

= N
120 · 16π2 η̂

µν
[
∇2R(x)

]
(1)
, (B.5)

where we used eq. (3.7), the fact that the external momentum p and field hρσ must be
taken four-dimensional, and the expansions from appendix C. Taking the trace, we obtain
using eq. (2.13b) that

lim
n→4

ηµν
[
〈Tµν(x)〉div,mod

(1) − 〈Tµν(x)〉div,orig
(1)

]
= − 1

60 · 16π2

[
∇2R(x)

]
(1)
, (B.6)

which is exactly the difference between the first-order trace anomalies (3.27) and (3.28)
computed using the definition of Godazgar and Nicolai in the original resp. modified
Breitenlohner-Maison scheme, cf. the alternative formulation (3.29).

7Since we will be interested in taking the trace and the n → 4 limit, we already consider the integrals
in four dimensions.
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C The h-expansion of geometrical quantities

The perturbative expansion used in this work for several geometrical quantities, up to
second order in the metric perturbation hµν , reads:

Γρµν = κ

[
∂(µh

ρ
ν) −

1
2∂

ρhµν

]
+ κ2

[1
2h

ρα∂αhµν − hρα∂(µhν)α

]
+O

(
κ3
)
, (C.1)

Rρσµν = κ
[
−∂µ∂[ρhσ]ν + ∂ν∂[ρhσ]µ

]
+ κ2

[
− 1

2∂[ρh|µ|
α∂σ]hνα −

1
2∂µh[ρ

α∂σ]hνα

+ 1
2∂νh[ρ

α∂σ]hµα −
1
2∂µh[ρ

α∂|ν|hσ]α + 1
2∂

αhµ[ρ∂σ]hνα −
1
2∂

αhν[ρ∂σ]hµα (C.2)

+ 1
2∂µhα[ρ∂

αhσ]ν −
1
2∂νhα[ρ∂

αhσ]µ −
1
2∂αhµ[ρ∂

αhσ]ν

]
+O

(
κ3
)
,

Rµν = κ

[
∂α∂(µhν)α −

1
2∂

2hµν −
1
2∂µ∂νh

]
+ κ2

[
− 1

4∂αh∂
αhµν + 1

2∂
αhµν∂βhα

β

+ 1
2h

αβ∂α∂βhµν + 1
2h

αβ∂µ∂νhαβ −
1
2∂

αhβ(µ∂
βhν)α + 1

2∂αh(µ
β∂αhν)β (C.3)

− hαβ∂α∂(µhν)β − ∂(µhν)
α∂βhαβ + 1

4∂(µh
αβ∂ν)hαβ + 1

2∂(µhν)
α∂αh

]
+O

(
κ3
)
,

R = κ
[
∂α∂βh

αβ − ∂2h
]

+ κ2
[
hαβ∂2hαβ −

1
4∂αh∂

αh+ ∂αh∂βhα
β + hαβ∂α∂βh

− ∂αhαβ∂γhβγ − 2hαβ∂β∂γhαγ −
1
2∂βhαγ∂

γhαβ + 3
4∂γhαβ∂

γhαβ
]

+O
(
κ3
)
,

(C.4)

R2 = κ2
[
∂α∂βh

αβ − ∂2h
]2

+O
(
κ3
)
, (C.5)

RµνRµν = 1
4κ

2
[
2∂α∂(µhν)α − ∂2hµν − ∂µ∂νh

][
2∂β∂µhνβ − ∂2hµν − ∂µ∂νh

]
+O

(
κ3
)
,

(C.6)

RρσµνR
ρσµν = 4κ2∂ρ∂[µhν]σ∂

µ∂[ρhσ]ν +O
(
κ3
)
. (C.7)

We obtained these expansions using the xPert package [31].

D The two-argument tensorial integral I(p, k)

The explicit results for the two-argument tensorial integrals (4.14) that we have employed
in the main part of the article read:

I(p, k) = i
16π2F00(k, p) , (D.1)

Iµ(p, k) = i
16π2 [F10(k, p)kµ + F01(k, p)pµ] , (D.2)

Iµν(p, k) = [Iµν(p, k)]tr + 1
n
ηµν I(p− k) , (D.3)

Iµνρ(p, k) = [Iµνρ(p, k)]tr + 3
2(n+ 2)(p+ k)(µηνρ) I(p− k) , (D.4)
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Iµνρσ(p, k) = [Iµνρσ(p, k)]tr + 3
2(n− 1)(n+ 4)

{
−
[
k2 − 6(p · k)

n+ 2 + p2
]
η(µνηρσ)

+
[
nk(µkν + 2(n− 2)k(µpν + np(µpν

]
ηρσ)

}
I(p− k) ,

(D.5)

Iµνρσα(p, k) = [Iµνρσα(p, k)]tr + 5
4(n− 1)(n+ 6)

{ 6
n+ 4

[
k2k(α + p2p(α

]
ηµνηρσ)

+
[
(n+ 2)(k + p)(α(k + p)µ − 12k(αpµ

]
(k + p)νηρσ)

− 3
[
k2 − 8

n+ 4(p · k) + p2
]
(k + p)(αηµνηρσ)

}
I(p− k) ,

(D.6)

Iµνρσαβ(p, k) =
[
Iµνρσαβ(p, k)

]
tr

+ 15
16(n2 − 1)(n+ 4)(n+ 6)(n+ 8)η

(µνηρσηαβ)

×
{

3(n+ 4)(n+ 6)
[
(k2)2 + (p2)2

]
− 60(n+ 4)(k2 + p2)(p · k)

+ 4(n2 + 4n+ 48)(p · k)2 + 2(3n2 + 22n+ 64)k2p2
}
I(p− k)

− 45(n+ 2)
8(n2 − 1)(n+ 6)(n+ 8)η

(µνηρσ(k + p)α(k + p)β)

×
[
(n+ 6)k2 − 10(p · k) + (n+ 6)p2

]
I(p− k)

+ 45
2(n2 − 1)(n+ 6)(n+ 8)η

(µνηρσ
{

(n+ 1)kαkβ)p2 + (n+ 1)pαpβ)k2

+ kαpβ)
[
(2n+ 7)(k2 + p2)− 10(p · k)

]}
I(p− k)

+ 15(n+ 2)
16(n2 − 1)(n+ 8)η

(µν
{

(n+ 4)(k + p)ρ(k + p)σ(k + p)α(k + p)β)

− 24(k + p)ρ(k + p)σkαpβ) + 48
n+ 2k

ρkσpαpβ)
}
I(p− k) ,

(D.7)

where the parametric integrals Fab(p, k) have been defined in eq. (4.21), and the traceless
contributions read

[Iµ1···µm(p, k)]tr =
m∑
j=0

m!
j!(m− j)!Fj,m−j(k, p)

[
k(µ1 · · · kµjpµj+1 · · · pµm)

]
tr
. (D.8)

The traceless part on the right-hand side can be computed from formula (A.4), taking
αk+βp in that formula, performing the appropriate number of derivatives with respect to
α and β, and setting α = β = 0 in the result.

We note that a consistency check can be made on these results. Namely, from the
definition (4.14) of the two-argument tensorial integral one computes analogously to the
trace condition (4.15) that

2pµ Iµν···(p, k) = p2 Iν···(p, k)−
∫

qν · · ·
q2(q − k)2

dnq
(2π)n +

∫
qν · · ·

(q − p)2(q − k)2
dnq

(2π)n

= p2 Iν···(p, k)− Iν···(−k) + Iν···(p− k) + pν I ···(p− k) + · · · ,
(D.9)
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where we have shifted the integration variable q → q + p in the last integral. Using the
recursion relations for the Fab given in appendix E, eq. (D.9) can be shown to hold after a
long but straightforward computation.

E The parameter integrals Fab

Here we prove relations for the parameter integrals Fab defined in eq. (4.21), which can be
used for a consistency check on the results for the two-argument tensorial integral (4.14)
given in appendix D. We recall the definitions (4.21) and (4.17):

Fab(k, p) =
∫ 1

0

∫ 1−y

0

xayb

x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0 dx dy , (E.1)

and, for better readability, leave out the arguments (k, p) of Fab in the remainder of this
appendix. For a, b > 0 it follows directly that

k2Fa,b−1 − k2Fa+1,b−1 + p2Fa−1,b − p2Fa−1,b+1 − 2(p · k)Fab

=
∫ 1

0

∫ 1−y

0
xa−1yb−1 dx dy = (a− 1)!(b− 1)!

(a+ b)! ,
(E.2)

which can be used to replace (p · k)Fab. If instead b = 0 and a > 0, we compute

2(p · k)Fa0 − p2Fa−1,0 + 2p2Fa−1,1

=
∫ 1

0

∫ 1−y

0

xa−1[2x(p · k)− (1− 2y)p2]
x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0 dx dy

= −
∫ 1

0

∫ 1−x

0
xa−1∂y ln

[
x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0

]
dy dx

= −
∫ 1

0
xa−1 dx ln

[
(k − p)2 − i0
k2 − i0

]
= −1

a
ln
[

(k − p)2 − i0
k2 − i0

]
,

(E.3)

and analogously for a = 0 and b > 0

(p · k)F0b = 1
2k

2F0,b−1 − k2F1,b−1 −
1
2b ln

[
(k − p)2 − i0
p2 − i0

]
, (E.4)

such that we can replace all (p · k)Fab with a, b ≥ 0.
Furthermore, we compute for a, b ≥ 0 that

2k2Fa+2,b =−
∫ 1

0

∫ 1−y

0
xa+1yb∂x ln

[
x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0

]
dx dy

− 2(p · k)Fa+1,b+1 + k2Fa+1,b

=−
∫ 1

0
(1− y)a+1yb

(
ln[y(1− y)] + ln

[
(k − p)2 − i0

])
dy

+ (a+ 1)
∫ 1

0

∫ 1−y

0
xayb ln

[
x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0

]
dx dy

− 2(p · k)Fa+1,b+1 + k2Fa+1,b , (E.5)
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where we integrated by parts in x, and analogously

2p2Fa,b+2 =−
∫ 1

0
xa(1− x)b+1

(
ln[x(1− x)] + ln

[
(k − p)2 − i0

])
dx

+ (b+ 1)
∫ 1

0

∫ 1−y

0
xayb ln

[
x(1− x)k2 + y(1− y)p2 − 2xy(p · k)− i0

]
dx dy

− 2(p · k)Fa+1,b+1 + p2Fa,b+1 . (E.6)

Performing the integrals over y or x in the first line of the right-hand sides of eqs. (E.5)
and (E.6) and equating the double integrals in the second line, it follows that

(a+ 1)p2(2Fa,b+2 − Fa,b+1) = (b+ 1)k2(2Fa+2,b − Fa+1,b)

+ (b− a)
[

a!b!
(a+ b+ 2)! + 2(p · k)Fa+1,b+1

]
,

(E.7)

and using the relation (E.2) we obtain

(a+ b+ 2)k2Fa+2,b − (a+ 1)k2Fa+1,b = (a+ b+ 2)p2Fa,b+2 − (b+ 1)p2Fa,b+1 . (E.8)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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