743 research outputs found

    On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

    Get PDF
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated labelled calculus

    From Display to Labelled Proofs for Tense Logics

    Get PDF
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt

    Electrode thickness measurement of a Si(Li) detector for the SIXA array

    Get PDF
    Cathode electrodes of the Si(Li) detector elements of the SIXA X-ray spectrometer array are formed by gold-palladium alloy contact layers. The equivalent thickness of gold in one element was measured by observing the characteristic L-shell X-rays of gold excited by monochromatised synchrotron radiation with photon energies above the L3 absorption edge of gold. The results obtained at 4 different photon energies below the L2 edge yield an average value of 22.4(35) nm which is consistent with the earlier result extracted from detection efficiency measurements. PACS: 29.40.Wk; 85.30.De; 07.85.Nc; 95.55.Ka Keywords: Si(Li) detectors, X-ray spectrometers, X-ray fluorescence, detector calibration, gold electrodes, synchrotron radiationComment: 10 pages, 4 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    A Tableaux Calculus for Reducing Proof Size

    Get PDF
    A tableau calculus is proposed, based on a compressed representation of clauses, where literals sharing a similar shape may be merged. The inferences applied on these literals are fused when possible, which reduces the size of the proof. It is shown that the obtained proof procedure is sound, refutationally complete and allows to reduce the size of the tableau by an exponential factor. The approach is compatible with all usual refinements of tableaux.Comment: Technical Repor

    NEXP-completeness and Universal Hardness Results for Justification Logic

    Full text link
    We provide a lower complexity bound for the satisfiability problem of a multi-agent justification logic, establishing that the general NEXP upper bound from our previous work is tight. We then use a simple modification of the corresponding reduction to prove that satisfiability for all multi-agent justification logics from there is hard for the Sigma 2 p class of the second level of the polynomial hierarchy - given certain reasonable conditions. Our methods improve on these required conditions for the same lower bound for the single-agent justification logics, proven by Buss and Kuznets in 2009, thus answering one of their open questions.Comment: Shorter version has been accepted for publication by CSR 201

    Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi

    Full text link
    We have recently presented a general method of proving the fundamental logical properties of Craig and Lyndon Interpolation (IPs) by induction on derivations in a wide class of internal sequent calculi, including sequents, hypersequents, and nested sequents. Here we adapt the method to a more general external formalism of labelled sequents and provide sufficient criteria on the Kripke-frame characterization of a logic that guarantee the IPs. In particular, we show that classes of frames definable by quantifier-free Horn formulas correspond to logics with the IPs. These criteria capture the modal cube and the infinite family of transitive Geach logics

    Prenex Separation Logic with One Selector Field

    Get PDF
    International audienceWe show that infinite satisfiability can be reduced to finite satisfiabil-ity for all prenex formulas of Separation Logic with k ≄ 1 selector fields (SL k). This fact entails the decidability of the finite and infinite satisfiability problems for the class of prenex formulas of SL 1 , by reduction to the first-order theory of a single unary function symbol and an arbitrary number of unary predicate symbols. We also prove that the complexity of this fragment is not elementary recursive, by reduction from the first-order theory of one unary function symbol. Finally, we prove that the Bernays-Schönfinkel-Ramsey fragment of prenex SL 1 formulas with quantifier prefix in the language ∃ * ∀ * is PSPACE-complete
    • 

    corecore