1,486 research outputs found
Botulinum Toxin for Pain Relief in Cancer Patients: A Systematic Review of Randomized Controlled Trials.
Cancer pain is one of the most disabling symptoms complained by cancer patients, with a crucial impact on physical and psychological well-being. Botulinum neurotoxins (BoNTs) type A and B have emerged as potential interventions for chronic pain; however, their role in these patients is still debated. Thus, this systematic review of randomized controlled trials aimed at assessing the effects of BoNT treatment for cancer pain to guide physicians in an evidence-based approach integrating BoNT in cancer care. Out of 5824 records, 10 RCTs satisfied our eligibility criteria and were included in the present work for a total of 413 subjects with several cancer types (breast, head and neck, esophageal, and thoracic/gastric cancers). While some studies demonstrated significant pain reduction and improved quality of life post-BoNT-A injections, outcomes across different cancer types were inconclusive. Additionally, several effects were observed in functioning, dysphagia, salivary outcomes, esophageal strictures, gastric emptying, and expansions. This review emphasizes the need for further standardized research to conclusively establish the efficacy of BoNT in comprehensive cancer pain management
MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state
Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers
Observation of Collider Muon Neutrinos with the SND@LHC Experiment
We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at √s=13.6 TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8 fb−1. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of 7.2<η<8.4, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 νμ interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed νμ signal
Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved
Sleep in the Human Hippocampus: A Stereo-EEG Study
Background. There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. Methodology/Principal Findings. We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i) a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii) a flattening of the time course of the very low frequencies (up to 1 Hz) across sleep cycles, with relatively high levels of power even during REM sleep; iii) a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. Conclusions/Significance. Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonanc
Measurement of the muon flux at the SND@LHC experiment
The Scattering and Neutrino Detector at the LHC (SND-LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < eta< 8.4. The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS)
Measurement of the muon flux at the SND@LHC experiment
The Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values
Measurement of the muon flux at the SND@LHC experiment
The Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values
Observation of Collider Muon Neutrinos with the SND@LHC Experiment
We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at s=13.6 TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8 fb-1. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of 7.2<8.4, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 νμ interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed νμ signal
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
- …
