24,366 research outputs found

    Correspondence

    Get PDF

    Graded Lie algebras with finite polydepth

    Get PDF
    If A is a graded connected algebra then we define a new invariant, polydepth A, which is finite if ExtA(M,A)0Ext_A^*(M,A) \neq 0 for some A-module M of at most polynomial growth. Theorem 1: If f : X \to Y is a continuous map of finite category, and if the orbits of H_*(\Omega Y) acting in the homology of the homotopy fibre grow at most polynomially, then H_*(\Omega Y) has finite polydepth. Theorem 2: If L is a graded Lie algebra and polydepth UL is finite then either L is solvable and UL grows at most polynomially or else for some integer d and all r, i=k+1k+ddimLikr\sum_{i=k+1}^{k+d} {dim} L_i \geq k^r, kk\geq some k(r)k(r)

    Anomalous Hall effect in a two dimensional electron gas with magnetic impurities

    Full text link
    Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.Comment: 5 pages, 3 figure

    Full phase diagram of isolated skyrmions in a ferromagnet

    Get PDF
    Magnetic skyrmions are topological quasi particles of great interest for data storage applications because of their small size, high stability, and ease of manipulation via electric current. Theoretically, however, skyrmions are poorly understood since existing theories are not applicable to small skyrmion sizes and finite material thicknesses. Here, we present a complete theoretical framework to determine the energy of any skyrmion in any material, assuming only a circular symmetric 360^\circ domain wall profile and a homogeneous magnetization profile in the out-of-plane direction. Our model precisely agrees with existing experimental data and micromagnetic simulations. Surprisingly, we can prove that there is no topological protection of skyrmions. We discover and confirm new phases, such as bi-stability, a phenomenon unknown in magnetism so far. The outstanding computational performance and precision of our model allow us to obtain the complete phase diagram of static skyrmions and to tackle the inverse problem of finding materials corresponding to given skyrmion properties, a milestone of skyrmion engineering

    Accessing the topological susceptibility via the Gribov horizon

    Get PDF
    The topological susceptibility, χ4\chi^4, following the work of Witten and Veneziano, plays a key role in identifying the relative magnitude of the η\eta^{\prime} mass, the so-called U(1)AU(1)_{A} problem. A nonzero χ4\chi^4 is caused by the Veneziano ghost, the occurrence of an unphysical massless pole in the correlation function of the topological current. In a recent paper (Phys.Rev.Lett.114 (2015) 24, 242001), an explicit relationship between this Veneziano ghost and color confinement was proposed, by connecting the dynamics of the Veneziano ghost, and thus the topological susceptibility, with Gribov copies. However, the analysis is incompatible with BRST symmetry (Phys.Rev.D 93 (2016) no.8, 085010). In this paper, we investigate the topological susceptibility, χ4\chi^4, in SU(3) and SU(2) Euclidean Yang-Mills theory using an appropriate Pad\'e approximation tool and a non-perturbative gluon propagator, within a BRST invariant framework and by taking into account Gribov copies in a general linear covariant gauge.Comment: 17 pages, 4 figures. v2: corrected typos, new figures, improved style of presentatio

    Nuclear Spin Dynamics of Ionized Phosphorus Donors in Silicon

    Full text link
    We demonstrate the coherent control and electrical readout of the nuclear spins of ionized phosphorus donors in natural silicon. By combining pulsed illumination with coherent electron spin manipulation, we selectively ionize the donor depending on its nuclear spin state, exploiting a spin-dependent recombination process via a spin pair at the Si/SiO2 interface. The nuclear-spin coherence time of the ionized donor is 18 ms, two orders of magnitude longer than in the neutral donor state, rendering the ionized donor a potential resource as a quantum memory. The presented experimental techniques allow for spectroscopy of ionized-donor nuclear spins, increase the sensitivity of electrically detected electron nuclear double resonance by more than two orders of magnitude, and give experimental access to the lifetime of parallel electron spin pairs.Comment: 6 pages, 4 figure

    Combining Topological Hardware and Topological Software: Color Code Quantum Computing with Topological Superconductor Networks

    Full text link
    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes, and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and present protocols for realizing topologically protected Clifford gates. These hexagonal cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome readout and logical TT-gates via magic state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but could also be realized in alternative settings such as quantum Hall-superconductor hybrids.Comment: 24 pages, 24 figure
    corecore