research

Combining Topological Hardware and Topological Software: Color Code Quantum Computing with Topological Superconductor Networks

Abstract

We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes, and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and present protocols for realizing topologically protected Clifford gates. These hexagonal cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome readout and logical TT-gates via magic state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but could also be realized in alternative settings such as quantum Hall-superconductor hybrids.Comment: 24 pages, 24 figure

    Similar works

    Full text

    thumbnail-image