407 research outputs found

    Fluid-fluid demixing transitions in colloid--polyelectrolyte star mixtures

    Full text link
    We derive effective interaction potentials between hard, spherical colloidal particles and star-branched polyelectrolytes of various functionalities and smaller size than the colloids. The effective interactions are based on a Derjaguin-like approximation, which is based on previously derived potentials acting between polyelectrolyte stars and planar walls. On the basis of these interactions we subsequently calculate the demixing binodals of the binary colloid--polyelectrolyte star mixture, employing standard tools from liquid-state theory. We find that the mixture is indeed unstable at moderately high overall concentrations. The system becomes more unstable with respect to demixing as the star functionality and the size ratio grow.Comment: 24 pages, 9 figures, submitted to Journal of Physics: Condensed Matte

    A single transcription factor is sufficient to induce and maintain secretory cell architecture

    Get PDF
    We hypothesized that basic helix–loop–helix (bHLH) MIST1 (BHLHA15) is a “scaling factor” that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural “blueprints.

    Judgment Aggregation with Abstentions under Voters' Hierarchy

    Get PDF
    International audienceSimilar to Arrow’s impossibility theorem for preference aggregation, judgment aggregation has also an intrinsic impossibility for generating consistent group judgment from individual judgments. Removing some of the pre-assumed conditions would mitigate the problem but may still lead to too restrictive solutions. It was proved that if completeness is removed but other plausible conditions are kept, the only possible aggregation functions are oligarchic, which means that the group judgment is purely determined by a certain subset of participating judges. Instead of further challenging the other conditions, this paper investigates how the judgment from each individual judge affects the group judgment in an oligarchic environment. We explore a set of intuitively demanded conditions under abstentions and design a feasible judgment aggregation rule based on the agents’ hierarchy. We show this proposed aggregation rule satisfies the desirable conditions. More importantly, this rule is oligarchic with respect to a subset of agenda instead of the whole agenda due to its literal-based characteristics

    Using social media to support small group learning

    Get PDF
    Abstract Background Medical curricula are increasingly using small group learning and less didactic lecture-based teaching. This creates new challenges and opportunities in how students are best supported with information technology. We explored how university-supported and external social media could support collaborative small group working on our new undergraduate medical curriculum. Methods We made available a curation platform (Scoop.it) and a wiki within our virtual learning environment as part of year 1 Case-Based Learning, and did not discourage the use of other tools such as Facebook. We undertook student surveys to capture perceptions of the tools and information on how they were used, and employed software user metrics to explore the extent to which they were used during the year. Results Student groups developed a preferred way of working early in the course. Most groups used Facebook to facilitate communication within the group, and to host documents and notes. There were more barriers to using the wiki and curation platform, although some groups did make extensive use of them. Staff engagement was variable, with some tutors reviewing the content posted on the wiki and curation platform in face-to-face sessions, but not outside these times. A small number of staff posted resources and reviewed student posts on the curation platform. Conclusions Optimum use of these tools depends on sufficient training of both staff and students, and an opportunity to practice using them, with ongoing support. The platforms can all support collaborative learning, and may help develop digital literacy, critical appraisal skills, and awareness of wider health issues in society

    Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Get PDF
    The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development.Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment.These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana

    Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche

    Get PDF
    The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1+ stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12+ endothelial cells and Cxcr4+ gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche

    Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing

    Get PDF
    Global yields of potato and tomato crops are reduced owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, wild potato relatives are not and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow 1–3. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine R gene sequence capture (RenSeq4) with single-molecule real-time SMRT sequencing (SMRT RenSeq) to clone Rpi-amr3i . This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSEQ can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops

    Microwave assisted solvent free synthesis of 1,3-diphenylpropenones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>1,3-Diphenylpropenones (chalcones) are well known for their diverse array of bioactivities. Hydroxyl group substituted chalcones are the main precursor in the synthesis of flavonoids. Till date various methods have been developed for the synthesis of these very interesting molecules. Continuing our efforts for the development of simple, eco-friendly and cost-effective methodologies, we report here a solvent free condensation of aryl ketones and aldehydes using iodine impregnated alumina under microwave activation. This new protocol has been applied to a variety of substituted aryl carbonyls with excellent yield of substituted 1,3-diphenylpropenones.</p> <p>Results</p> <p>Differently substituted chalcones were synthesized using iodine impregnated neutral alumina as catalyst in 79-95% yield in less than 2 minutes time under microwave activation without using any solvent. The reaction was studied under different catalytic conditions and it was found that molecular iodine supported over neutral alumina gives the best yield. The otherwise difficult single step condensation of hydroxy substituted aryl carbonyls is an attractive feature of this protocol to obtain polyhydroxychalcones in excellent yields. In order to find out the general applicability of this new endeavor it was successfully applied for the synthesis of 15 different chalcones including highly bioactive prenylated hydroxychalcone xanthohumol.</p> <p>Conclusion</p> <p>A new, simple and solvent free method was developed for the synthesis of substituted chalcones in environmentally benign way. The mild reaction conditions, easy work-up, clean reaction profiles render this approach as an interesting alternative to the existing methods.</p
    corecore