3,088 research outputs found

    Infrared behavior of graviton-graviton scattering

    Get PDF
    The quantum effective theory of general relativity, independent of the eventual full theory at high energy, expresses graviton-graviton scattering at one loop order O(E^4) with only one parameter, Newton's constant. Dunbar and Norridge have calculated the one loop amplitude using string based techniques. We complete the calculation by showing that the 1/(d-4) divergence which remains in their result comes from the infrared sector and that the cross section is finite and model independent when the usual bremsstrahlung diagrams are included.Comment: 12 pages, uses axodra

    Inherited Twistor-Space Structure of Gravity Loop Amplitudes

    Full text link
    At tree-level, gravity amplitudes are obtainable directly from gauge theory amplitudes via the Kawai, Lewellen and Tye closed-open string relations. We explain how the unitarity method allows us to use these relations to obtain coefficients of box integrals appearing in one-loop N=8 supergravity amplitudes from the recent computation of the coefficients for N=4 super-Yang-Mills non-maximally-helicity-violating amplitudes. We argue from factorisation that these box coefficients determine the one-loop N=8 supergravity amplitudes, although this remains to be proven. We also show that twistor-space properties of the N=8 supergravity amplitudes are inherited from the corresponding properties of N=4 super-Yang-Mills theory. We give a number of examples illustrating these ideas.Comment: 32 pages, minor typos correcte

    MHV-Vertices for Gravity Amplitudes

    Full text link
    We obtain a CSW-style formalism for calculating graviton scattering amplitudes and prove its validity through the use of a special type of BCFW-like parameter shift. The procedure is illustrated with explicit examples.Comment: 21 pages, minor typos corrected, proof added in section

    Cochlear SGN neurons elevate pain thresholds in response to music.

    Get PDF
    The C-tactile (CLTM) peripheral nervous system is involved in social bonding in primates and humans through its capacity to trigger the brain’s endorphin system. Since the mammalian cochlea has an unusually high density of similar neurons (type-II spiral ganglion neurons, SGNs), we hypothesise that their function may have been exploited for social bonding by co-opting head movements in response to music and other rhythmic movements of the head in social contexts. Music provides one of many cultural behavioural mechanisms for ‘virtual grooming’ in that it is used to trigger the endorphin system with many people simultaneously so as to bond both dyadic relationships and large groups. Changes in pain threshold across an activity are a convenient proxy assay for endorphin uptake in the brain, and we use this, in two experiments, to show that pain thresholds are higher when nodding the head than when sitting still

    Recursive Calculation of One-Loop QCD Integral Coefficients

    Full text link
    We present a new procedure using on-shell recursion to determine coefficients of integral functions appearing in one-loop scattering amplitudes of gauge theories, including QCD. With this procedure, coefficients of integrals, including bubbles and triangles, can be determined without resorting to integration. We give criteria for avoiding spurious singularities and boundary terms that would invalidate the recursion. As an example where the criteria are satisfied, we obtain all cut-constructible contributions to the one-loop n-gluon scattering amplitude, A_n^{oneloop}(...--+++...), with split-helicity from an N=1 chiral multiplet and from a complex scalar. Using the supersymmetric decomposition, these are ingredients in the construction of QCD amplitudes with the same helicities. This method requires prior knowledge of amplitudes with sufficiently large numbers of legs as input. In many cases, these are already known in compact forms from the unitarity method.Comment: 36 pages; v2 clarification added and typos fixed, v3 typos fixe

    Integrating Emerging Areas of Nursing Science into PhD Programs

    Get PDF
    The Council for the Advancement of Nursing Science aims to “facilitate and recognize life-long nursing science career development” as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement “The Research-Focused Doctoral Program in Nursing: Pathways to Excellence,” Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing

    WISER Deliverable D3.3-2: The importance of invertebrate spatial and temporal variation for ecological status classification for European lakes

    Get PDF
    European lakes are affected by many human induced disturbances. In principle, ecological theories predict that the structure and functioning of benthic invertebrate assemblage (one of the Biological Quality Elements following the Water Framework Directive, WFD terminology) change in response to the level of disturbances, making this biological element suitable for assessing the status and management of lake ecosystems. In practice, to set up assessment systems based on invertebrates, we need to distiguish community changes that are related to human pressures from those that are inherent natural variability. This task is complicated by the fact that invertebrate communities inhabiting the littoral and the profundal zones of lakes are constrained by different factors and respond unevenly to distinct human disturbances. For example it is not clear yet how the invertebrates assemblages respond to watershed and shoreline alterations, nor the relative importance of spatial and temporal factors on assemblage dynamics and relative bioindicator values of taxa, the habitat constraints on species traits and other taxonomic and methodological limitations. The current lack of knowledge of basic features of invertebrate temporal and spatial variations is limiting the fulfillment of the EU-wide intercalibration of lake ecological quality assessment systems in Europe, and thus compromising the basis for setting the environmental objectives as required by the WFD. The aim of this deliverable is to provide a contribution towards the understanding of basic sources of spatial and temporal variation of lake invertebrate assemblages. The report is structured around selected case studies, manly involving the analysis of existing datasets collated within WISER. The case studies come from different European lake types in the Northern, Central, Alpine and Mediterranean regions. All chapters have an obvious applied objective and our aim is to provide to those dealing with WFD implementation at various levels useful information to consider when designing monitoring programs and / or invertebrate-based classification systems
    • 

    corecore