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Abstract

The quantum effective theory of general relativity, independent of the even-
tual full theory at high energy, expresses graviton-graviton scattering at one
loop order O

(

E4
)

with only one parameter, Newton’s constant. Dunbar and
Norridge have calculated the one loop amplitude using string based techniques.
We complete the calculation by showing that the 1

d−4 divergence which remains
in their result comes from the infrared sector and that the cross section is finite
and model independent when the usual bremsstrahlung diagrams are included.

1 Introduction

The simplest low energy process in quantum gravity is graviton-graviton scattering.

Although experimentally unobservable, this reaction forms an interesting theoretical

laboratory that illustrates the workings of quantum gravity. If general relativity is

the correct low energy classical theory of gravity, then its quantum theory forms an

effective field theory capable of analyzing the low energy quantum effects. Graviton-

graviton scattering is particularly useful in illustrating the logic of predictions in a

quantum effective theory. Indeed, at one loop order this reaction provides a model-

independent quantum prediction of general relativity.

∗donoghue@phast.umass.edu
†kakukk@physics.utoronto.ca
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At tree level, the graviton-graviton scattering amplitude is simple in the helicity

basis, although the calculation to obtain this result from the Einstein action is not so

simple. With + (−) representing helicity +2 (−2)1, all tree amplitudes for 1+2 → 3+4

vanish except those related to Atree(++; ++) by crossing and [1]

Atree(++; ++) =
i

4

κ2s3

tu
(1)

Here κ2 = 32πG and s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2 denote the usual

Madelstam variables.

It is simple to show that graviton-graviton scattering should be finite and pa-

rameter independent at one-loop order [2]. In the effective low energy theory [3]

gravitational effects are expanded in a derivative expansion with all terms satisfying

general covariance

Sgrav =
∫

d4x
√

g

[

2

κ2
R + c1 R2 + c2 RµνR

µν + . . . + Lmatter

]

(2)

Here κ2 = 32πG and G is Newton’s constant, c1,2 are unknown dimensionless param-

eters which contain information about the (presently unknown) ultimate high energy

theory. A third covariant of order R2, RµναβRµναβ can be removed in four dimensional

space-time through the use of the Bianchi identities. Since the curvature involves two

derivatives of the metric, the Einstein action (the term with R) is seen to be of order

E2, while R2 and RµνR
µν are of order E4.

Loop diagrams obey a power-counting theorem [4, 5]. One loop diagrams formed

from vertices given by the Einstein action yield effects at order E4 – any process

with more loops is higher order in the energy expansion. The ultraviolet divergences

at one loop necessarily have the same structure as the local Lagrangian in Eqn. (2),

which means that they must be proportional to R2 or RµνR
µν . Then, at this order, the

ultraviolet divergences can be absorbed into renormalized values of the the parameters

c1,2. These renormalized constants are unknown and will be different depending on

the nature of the theory that forms the ultimate correct high energy theory which

includes gravity. In this sense these parameters are model dependent. However, they

do not contribute to the process of graviton-graviton scattering. At the order that we

are working, the R2 Lagrangians are applied to form vertices for on-shell amplitudes,

1Note that in our notation crossing also requires one to flip the ± sign for the affected gravitons.
This implies in particular that A(−−; ++) must be a symmetric function of s, t and u.
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which is to say that the equations of motion are satisfied for the external states.

However, the equations of motion for the purely gravitational sector are Rµν = 0,

and hence R = 0 also. Thus the effects of both of the R2 terms in Eqn. (2) vanish in

purely gravitational processes. It is this argument that tells us that graviton-graviton

scattering is finite and independent of any unknown parameters at one loop order.

The power counting theorem is manifest in the one-loop results calculated by

Dunbar and Norridge [7]. The one-loop amplitude is formed by using the lowest

order tree amplitude twice in order to produce a loop diagram, and hence carries

coupling constants κ4 ∼ G2
N . Dimensionally this requires that the result carry four

powers of the external energies. This is seen in the results:

A1−loop(++;−−) = −i
κ4

30720π2

(

s2 + t2 + u2
)

A1−loop(++; +−) = −1

3
A1−loop(++;−−)

A1−loop(++; ++) =
κ2

4(4π)2−ǫ

Γ2(1 − ǫ)Γ(1 + ǫ)

Γ(1 − 2ǫ)
Atree(++; ++) × (s t u) (3)

×







2

ǫ

(

ln(−u)

st
+

ln(−t)

su
+

ln(−s)

tu

)

+
1

s2
f

(−t

s
,
−u

s

)

+2

(

ln(−u) ln(−s)

su
+

ln(−t) ln(−s)

tu
+

ln(−t) ln(−s)

ts

)







where

f

(−t

s
,
−u

s

)

=
(t + 2u)(2t + u) (2t4 + 2t3u − t2u2 + 2tu3 + 2u4)

s6

(

ln2 t

u
+ π2

)

+
(t − u) (341t4 + 1609t3u + 2566t2u2 + 1609tu3 + 341u4)

30s5
ln

t

u

+
1922t4 + 9143t3u + 14622t2u2 + 9143tu3 + 1922u4

180s4
, (4)

and all logarithms with negative arguments are understood to have a −iπ imaginary

part. Note that this represents a real tour-de-force. Done in conventional field theory,

the calculation is formidably difficult. It is a tribute to the string based techniques

that the results are obtainable with less then Herculean effort. Indeed, after cal-

culating the graviton loops, the authors write down the result for massless scalars,

fermions and photons in the loops in just a few lines. However, the result is not tied
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to the validity of string theory as a fundamental theory – the technique is simply an

efficient way to calculate the results of usual (quantum) general relativity.

One notices that the one loop amplitude in Eqn. (3) contains a factor of 1
ǫ
, i.e.

it is not finite. At first, this seems to contradict the general reasoning given above.

However, in the complete calculation of the physical process of graviton scattering,

there will also be bremsstrahlung diagrams describing the radiation of soft gravitons

off the external graviton lines. When calculated in a d = 4 − 2ǫ dimensional phase

space these infrared effects also bring in a 1
ǫ

factor. If the divergence in Eqn. (3) is

an infrared divergence, and if the effective field theory of gravity behaves as a proper

effective field theory, then the infrared loop effects should be canceled against the soft

radiation. While there are good reasons for believing that the gravitational effective

field theory should be well behaved in the infrared, the long-standing doubts about

quantum gravity make it worthwhile to check this property in the only complete

calculation available. In Ref. [6] it was shown that the scattering of spin-0 fields

is infrared finite even in the limit when their masses vanish. However, it was only

conjectured there that the same is true for massless matter of higher spin (a situation

similar to graviton-graviton scattering). One also notes that the scale of the logarithm

is not defined. This is an indication that the calculation is incomplete. We will see

that the scale in the logarithm comes from an infrared regulator for soft gravitons.

Finally, part of our motivation comes from a minor quibble with the argument given

above. In the effective Lagrangian we removed the (Rµναβ)2 term by the use of an

identity that is only valid in exactly four dimensions. Indeed, in any higher dimension

the argument given would not apply, and the graviton scattering amplitude would

contain a model dependent parameter. This means that in the quantum theory we

can only be certain of the result if we use a regularization scheme that works in

four dimensions. However, the only scheme that we know about that preserves the

symmetries of general relativity is dimensional regularization, and it was that scheme

used in Ref. [7]. While it is unlikely that the regularization scheme would lead to

an extra divergence, we also want to confirm that the residual divergence is not an

artifact of the ultraviolet regularization.
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2 Soft gravitons in graviton-graviton scattering

We will explicitly calculate the divergences in the one-loop differential cross section for

graviton-graviton scattering. We will find a complete cancellation of infrared diver-

gences when we calculate the cross section up to O(κ6), including the Bremsstrahlung

graphs, as shown in Fig. 1.

κ2× A + κ4× A +(etc.)

2

+

+ A +(etc.)κ3×

2

Figure 1: The expansion of the cross section in κ in graviton-graviton scattering. The
quantity Atree represents the sum of all tree level diagrams. Solid lines represent hard
gravitons, wavy lines are soft gravitons.

In this figure we explicitly show all factors of κ. The first term in the figure (and

five additional graphs, not shown, with graviton exchanges between various pairs of

external legs) is already included in the full one-loop scattering calculation and has an

infrared divergence. This divergence is canceled by another divergence in the second

term in the figure, a soft Bremsstrahlung process, which should be added as it is

degenerate in energy with pure hard scattering. The second line in the figure shows

that the actual cancellation occurs in the O(κ6) terms because the leading O(κ4) is

tree level and infrared finite.

We will derive a general formula for the infrared divergences which uses the on-

shell Born amplitude. The most convenient regularization procedure is dimensional

regularization. We calculate the IR divergent part of the graviton radiation term in

Fig. 1 and show [cf. Eqn. (26)] that to do so we only need to know the on-shell tree

level amplitudesAtree(λ1, λ2, λ3, λ4). We always work in the helicity basis and λi = ±

5



stands for the helicity of the ith hard graviton. The only divergence occurs when

the gravitons have helicity assignments ++; ++ (and in the cases related to this by

crossing) and that is the only case when the tree level amplitude is nonvanishing. In

the following we show [Eqn. (13)] that soft graviton radiation does not flip the hard

graviton spins so that all IR divergences are proportional to the tree amplitude with

the same helicity.

The amplitude with one soft graviton radiation is the sum of the four diagrams

in Fig. 2. We first calculate the contribution from 2(a)

k, λ

1
2

3
4A

(a)

k, λ

1

2

3

4A
(b) k, λ

1
2

3
4A

(c)

k, λ

1

2

3

4A
(d)

Figure 2: The four Feynman diagrams that contribute to soft graviton radiation at
lowest order in hard graviton-graviton scattering.

Arad
(a) = Atree

µν (1, 2; 3, k4 + k)
i

(k4 + k)2 + iǫ
Pµν,µ′ν′ i

κ

2
τ

µ′ν′

αβ,λρ ǫ
αβ
4 ǫλρ (5)

where writing a number in the argument of the tree amplitude means putting those

lines on shell and multiplying by the appropriate ǫµν polarization tensor. The matrices

I and P denote

Iαβ,γδ =
1

2
(ηαγηβδ + ηαδηβγ) (6)

and

Pαβ,γδ = Iαβ,γδ −
1

2
ηαβηγδ. (7)

The gauge invariance of the tree level amplitudes implies, for k → 0,

k
µ
4 Atree

µν (1, 2; 3, k4 + k) = O(k) (8)

and also

ηµν Aµν(1, 2; 3, k4 + k) = O(k). (9)
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These restrictions can be derived as follows. Gauge invariance implies that the on-

shell amplitude is unchanged under shifting the polarization tensor by

ǫµν −→ ǫµν + (kµξν + ξµkν − k · ξ ηµν), (10)

with any four-vector ξµ, a transformation that keeps kµǫµν zero. In order for an

amplitude Aµνǫ
µν to be invariant under such replacement, we need for any on shell

momentum k

2ξµ(kνA
µν) = (k · ξ)Aµ

µ. (11)

This must hold for any ξ, hence we have Eqns. (8,9).

µν =⇒αβ i
q2+iǫ

·
[

ηα
(µη

β
ν) − 1

2
ηµνη

αβ
]

=⇒

αβ γδ

k1

k2 k3

µν

i
2
κ · τµν

αβ,γδ(k1, k2, k3)

Figure 3: The graviton propagator and the triple gluon vertices in harmonic gauge.
For an expression of τ

µν
αβ,γδ see Eqn. (12).

The graviton propagator and the triple graviton couplings are shown in Fig. 3

τ
µν
αβ,γδ(k1, k2, k3) = (12)

Pαβ,γδ

[

k
µ
2 kν

2 + (k2 − k1)
µ(k2 − k1)

ν + k
µ
1 kν

1 −
3

2
ηµνk2

1

]

+2 (k1)λ(k1)σ

[

I
λσ,

αβI
µν,

γδ + I
λσ,

γδI
µν

αβ − I
λµ

αβI
σν,

γδ − I
σν,

αβI
λµ

γδ

]

+(k1)λk
µ
1

(

ηαβI
λν,

γδ + ηγδI
λν,

αβ

)

+ (k1)λk
ν
1

(

ηαβI
λµ,

γδ + ηγδI
λµ,

αβ

)

−k2
1

(

ηαβI
µν,

γδ + ηγδI
µν,

αβ

)

− ηµνkλ
1kσ

1 (ηαβIγδ,λσ + ηγδIαβ,λσ)

+2 kλ
1

(

I
σν,

αβIγδ,λσ(k2 − k1)
µ + I

σµ,
αβIγδ,λρ(k2 − k1)

ν

−I
σν,

γδIαβ,λσk
µ
2 − I

σµ,
γδIαβ,λσkν

2

)

+k2
1

(

I
σµ,

αβI ν
γδ,σ + I ν

αβ,σI
σµ,

αδ

)

+ ηµνkλ
1 (k1)σ

(

Iαβ,λρI
ρσ,

γδ + Iγδ,λρI
ρσ,

αβ

)

+
(

k2
2 + (k2 − k1)

2
)

(

I
σµ,

αβI ν
γδ,σ + I

σν,
αβI

µ
γδ,σ − 1

2
ηµνPαβ,γδ

)

−
(

k2
2ηγδI

µν,
αβ + (k2 − k1)

2ηαβI
µν,

γδ

)

.

7



Putting together Eqns. (5 – 12), we arrive at a simplified expression

Arad
(a)IR = −κ

k
µ
4 ǫµν(k, λ)kν

4

(k4 + k)2 + iǫ
Atree(1, 2, 3, 4) +

κO(k)

k · k4 + iǫ
(13)

where the “IR” index emphasizes that we keep only the leading term when k → 0. We

observe indeed that the O
(

1
k

)

term is proportional to the Born amplitude without

flipping any of the hard particles’ spins.

Now we add on the contribution from Fig. 2b,c,d. The result is

Arad
IR = −κAtree(1, 2, 3, 4)

4
∑

n=1

kµ
nǫµν(k, λ)kν

n

(kn + ηnk)2 + iǫ
+

κO(k)

k · kn

. (14)

Next we need to square this amplitude and sum over the soft graviton spin:

∑

λ

|Arad
IR |2 = κ2 |Atree|2

4
∑

i,j=1

k
µ
i kν

i Πµν,αβ(k) kα
j k

β
j

(ki + ηik)2 (kj + ηjk)2
, (15)

where the sum over graviton polarization tensors is

Πµν,αβ(k) ≡
∑

±

ǫ
µ
±(k)ǫν

±(k)ǫα
±(k)ǫβ

±(k) =
1

2

(

ΠµαΠνβ + ΠµβΠνα − ΠµνΠαβ
)

(16)

and

Πµν(k) = kµλν + kνλµ − (k · λ) ηµν (17)

with an arbitrary vector λ, same for all terms in the sum, chosen as λµ = (1, 0).

Doing the algebra in the above formula gives us

∑

λ

|Arad
IR |2 =

κ2 |Atree|2
4k2

∑

ij

ηiηjEiEj

(cos γij − cos αi cos αj)
2 − 1

2
sin2 αi sin

2 αj

(1 − cos αi)(1 − cos αj)
, (18)

where k now stands for the energy of the soft gluon (not the four-momentum), and

γij is the angle between the (d− 1)-dimensional momenta of the hard gravitons, αi is

the angle between the ith hard and the soft gravitons; Ei is the CM energy of the ith

graviton and ηi = +1 (−1) for incoming (outgoing) hard gravitons.

At this point we make a comment on how dimensional regularization works. In

the one-loop amplitude we find a 1
ǫ

divergence in dimensional regularization. As

pure gravity is one-loop finite and all the divergences in one-loop graviton-graviton

scattering come from the pure gravity part only, all of this 1
ǫ

should be of infrared

origin and consequently be canceled by the square of the amplitude Arad. However,
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Arad itself is a tree level amplitude which does not diverge; the canceling 1
ǫ

factor

comes from the phase space integral. One might wonder then why we are not getting

too much divergence: the leading term is 1
k2 , so the phase space integral introduces

∫

dd−1k

k k2
(19)

which is logarithmically divergent. In the same time the angular integration is also

divergent and we find that dimensional regularization does not handle correctly an

integral of the type
∮

dΩd−2(n)

(1 − cos α)2
∼ B(1 − ǫ,−1 − ǫ) (20)

(here α is the angle between the direction of n and a fixed direction.) The above

Euler function is

B(1 − ǫ,−1 − ǫ) =
Γ(1 − ǫ)Γ(−1 − ǫ)

Γ(−2ǫ)
→ −2 + O(ǫ) (21)

finite, although the integral includes a severe collinear singularity. Fortunately, in

our case, we will not encounter this problem: the spins “conspire” so that there is an

additional angular factor which takes away all collinear singularities in this integral.

In other models, however, like one with elementary massless scalars, this might be a

problem which requires further treatment.

Now we calculate the differential cross section in d = 4 − 2ǫ dimensions. We

focus on the infrared region only, integrating up to a cutoff Λ ≪ √
s and neglecting

momenta of order Λ and above. Such soft graviton radiation should (and will) be

sufficient to cancel the IR divergences due to one-loop integrals. In particular, we do

not consider hard collinear gravitons. The divergences due to hard collinear graviton

radiation (i.e. when one of the αi’s is small) are not canceled by loops. However, these

divergences are all proportional to Λ so can be unambiguously separated from the

soft divergences. Some rather tedious algebra leads to an integral over the direction

m of the soft Bremsstrahlung graviton

dσrad
IR

dΩd−1(n)
=

κ2 |Atree|2
(2π)3d−722d+2

∑

ij

ηiηj

∫ Λ

0

dk

k
kd−4 (22)

×
∮

dΩd−1(m)
(cos γij − cos αi cos αj)

2 − 1
2
sin2 αi sin

2 αj

(1 − cos αi)(1 − cos αj)
.

9



The k integral has a 1
ǫ

infrared divergence. All divergences that are collinear and

infrared simultaneously should come from the second integral. However, we observe

that the numerator in the angular integral vanishes when the denominator does,

actually canceling out the singularity. This fact is necessary to allow us to consistently

separate collinear divergences from soft ones. In order to find the divergent part, we

need to calculate only the leading term in

F (0)(γ) + ǫF (1)(γ) + . . . = (23)
∮

dΩd−1(m)
(cos γij − cos αi cos αj)

2 − 1
2
sin2 αi sin

2 αj

(1 − cos αi)(1 − cos αj)
.

Substituting this into Eqn. (22) we find

dσrad
IR

dΩd−1(n)
= − κ2 |Atree|2

(2π)5−6ǫ211−4ǫ

∑

ij

F (0)(γij) ηiηj (24)

×
[

1

ǫ
− 2 ln Λ + 6 ln (2π) + 4 ln 2 +

F (1)(γij)

F (0)(γij)

]

.

The result in four dimensions is

F (0)(γ) = 4π

[

3 + cos γ

6
− (1 − cos γ) ln

2

1 − cos γ

]

. (25)

With this, we finally find for the cross section

dσrad
IR

dΩ
= −κ2 |Atree|2

27(2π)4

(

t

s
ln

−t

s
+

u

s
ln

−u

s

)

(26)

×
[

1

ǫ
− 2 lnΛ + 6 ln (2π) + 4 ln 2 +

∑

ij ηiηjF (1)(γij)
∑

ij ηiηjF (0)(γij)

]

+ O
(

Λ√
s

)

.

We have found that the infrared divergent part is indeed proportional to the square of

the Born amplitude. Because in the (++;−−) and (++; +−) helicity cases there is

no IR divergence to cancel, the vanishing of the Born terms makes sure none emerges

in the radiative process.

In the (++; ++) helicity case we need to use the cross section formula

(

dσ[gg → gg]

dΩ

)

nonrad

=
2Re(AtreeA1−loop)

(2π)225s
(27)

in order to calculate the O(κ6) contribution to the cross section (see Fig. 1.) Using

the Dunbar-Norridge [7] 1-loop amplitude amplitude, Eqn. (3), we find the O(κ6)

10



contribution to the cross section for the 2 → 2 process:

(

dσ(++; ++)

dΩ

)

nonrad

=
κ2 |Atree|2
27(2π)4

× (28)

×











(

t

s
ln

−t

s
+

u

s
ln

−u

s

) (

1

ǫ
+ ln 4π − ln s − γ

)

+
[

ln
−t

s
ln

−u

s
+

tu

2s2
f

(−t

s
,
−u

s

)]











.

We observe that the 1
ǫ
divergence cancels when we add together Eqns. (26) and (28).

The finite term in Eqn. (28) contains an undetermined scale due to the logarithm of

s. The occurrence of such a scale is a common feature of dimensional regularization

in the presence of infinities. This scale is provided by the “ultraviolet” cutoff in the

radiative cross section. Our final result for the sum of the cross sections is
(

dσ

dΩ

)

tree

+

(

dσ

dΩ

)

rad.

+

(

dσ

dΩ

)

nonrad.

= (29)

=
κ4s5

2048π2t2u2



















1 +
κ2s

16π2





 ln
−t

s
ln

−u

s
+

tu

2s2
f

(−t

s
,
−u

s

)

−
(

t

s
ln

−t

s
+

u

s
ln

−u

s

)

(

3 ln(2π2) + γ + ln
s

Λ2
+

∑

ij ηiηjF (1)(γij)
∑

ij ηiηjF (0)(γij)

)

























.

In this form all divergences are canceled and all logarithms are dimensionless. There

is a logarithmic dependence on the scale where we cut off the non-infrared radiative

gravitons. We remind the reader that the finite functions f
(

−t
s

, −u
s

)

and

∑

ij
ηiηjF

(1)(γij)
∑

ij
ηiηjF(0)(γij)

are respectively given in Eqn. (4) and can be extracted from Eqn. (23).

3 Conclusions

This has been the first explicit investigation of the infrared properties of a one loop

amplitude in quantum gravity. We have achieved our goal in demonstrating that

the effective theory of gravitation is not plagued by infrared divergences, its soft

divergences even cancel in the case of one-loop graviton-graviton scattering, and also
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demonstrated that, similarly to the case of QED, summation over degenerate states

in the final state suffices to get a final and sensible cross section.

The result for graviton-graviton scattering to one-loop order is beautiful and sig-

nificant because it forms a low energy theorem for quantum gravity. No matter what

the high energy theory of gravity may turn out to be, and independent of the mas-

sive particles in the theory, as long as the low energy limit leads to general relativity

the scattering rate must have the model independent form shown in Eqn (29). As

expected, the quantum effective field theory of general relativity is well-behaved in

the infrared.
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