77 research outputs found

    Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints : computational and experimental approaches

    Get PDF
    The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that generated at this clearance joints are computed by considered several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based for cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. In addition, an experimental apparatus is use to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.Fundação para a Ciência e a Tecnologia (FCT

    Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation

    Get PDF
    The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a Ciência e a Tecnologia (FCT

    A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

    Get PDF
    A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a Ciência e a Tecnologia (FCT

    Coupling dynamics of a geared multibody system supported by Elastohydrodynamic lubricated cylindrical joints

    Get PDF
    A comprehensive computational methodology to study the coupling dynamics of a geared multibody system supported by ElastoHydroDynamic (EHD) lubricated cylindrical joints is proposed throughout this work. The geared multibody system is described by using the Absolute-Coordinate-Based (ACB) method that combines the Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute Nodal Coordinate Formulation (ANCF) characterizing the flexible bodies. Based on the finite-short bearing approach, the EHD lubrication condition for the cylindrical joints supporting the geared system is considered here. The lubrication forces developed at the cylindrical joints are obtained by solving the Reynolds’ equation via the finite difference method. For the evaluation of the normal contact forces of gear pair along the Line Of Action (LOA), the time-varying mesh stiffness, mesh damping and Static Transmission Error (STE) are utilized. The time-varying mesh stiffness is calculated by using the Chaari’s methodology. The forces of sliding friction along the Off-Line-Of-Action (OLOA) are computed by using the Coulomb friction models with a time-varying coefficient of friction under the EHD lubrication condition of gear teeth. Finally, two numerical examples of application are presented to demonstrate and validate the proposed methodology.National Natural Science Foundations of China under Grant 11290151, 11221202 and 11002022, Beijing Higher Education Young Elite Teacher Project under Grant YETP1201

    On the contact detection for contact-impact analysis in multibody systems

    Get PDF
    One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT

    Trajectory optimization of a walking mechanism having revolute joints with clearance using ANFIS approach

    No full text
    Clearance as a real joint characteristic leads to deviation from desired trajectory in articulated mechanisms. This phenomenon makes the kinematic and dynamic performances of the mechanism worse. In this study, kinematic analysis of a Jansen's mechanism used in a walking machine is performed. The model mechanism having two revolute joints with clearance is investigated for the trajectory analysis of the output link. It is clear that the mechanism's trajectory is very sensitive to the clearance joint characteristics even if the clearance size is small. The adaptive network-based fuzzy inference system (ANFIS) is used to model the characteristics of joints with clearance. By using the suitable design variables and constraints, minimization of the trajectory errors arising from clearance is considered as an optimization problem. Optimization techniques are used to solve this problem for adjusting the optimum values of design variables. The obtained link dimensions show the success of the proposed modeling and optimization approach.Clearance as a real joint characteristic leads to deviation from desired trajectory in articulated mechanisms. This phenomenon makes the kinematic and dynamic performances of the mechanism worse. In this study, kinematic analysis of a Jansen’s mechanism used in a walking machine is performed. The model mechanism having two revolute joints with clearance is investigated for the trajectory analysis of the output link. It is clear that the mechanism’s trajectory is very sensitive to the clearance joint characteristics even if the clearance size is small. The adaptive network-based fuzzy inference system (ANFIS) is used to model the characteristics of joints with clearance. By using the suitable design variables and constraints, minimization of the trajectory errors arising from clearance is considered as an optimization problem. Optimization techniques are used to solve this problem for adjusting the optimum values of design variables. The obtained link dimensions show the success of the proposed modeling and optimization approach
    • …
    corecore