246 research outputs found

    For geological investigations with airborne thermal infrared multispectral images: Transfer of calibration from laboratory spectrometer to TIMS as alternative for removing atmospheric effects

    Get PDF
    This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data

    Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    Get PDF
    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites

    Regional sedimentological variations among dark crater floor features: Toward a model for modern eolian sand distribution on Mars

    Get PDF
    It has been known since 1972 that many Martian craters have dark features on their floors, and that when seen at higher image resolution, some of the dark units are dune fields. Interpretations of thermal inertia derived from Viking Infrared Thermal Mapper (IRTM) data have been used to suggest that many dark intracrater features, including those where dunes are not observed in images, contain some amount of sand or particles in the range 0.1-10 mm. However, it has never been known if all these dark features consist of dunes. We assembled a set of 108 carefully constrained Viking IRTM observations for dark crater-floor units. The data and selection criteria are described in detail elsewhere. Studied in conjunction with Mariner 9 and Viking orbiter images of each crater, these data indicate that the dark crater-floor units in some regions have different thermal properties than those in other regions. Thermal inertias were computed using the Viking thermal model of H. H. Kieffer and corrected for atmospheric CO2 effects using the relationship for a dust-free atmosphere shown by Haberle and Jakosky

    Deucalionis Regio, Mars: Evidence for a unique mineralogic endmember and a crusted surface

    Get PDF
    A small equatorial region south of Sinus Meridiani, Deucalionis Regio, has been found spectrally distinct from other regions as seen in a high spectral resolution telescopic image of the meridian hemisphere of Mars. Analysis of Viking IRTM and other related data suggest that Deucalionis Regio has a crusted surface. The crust-bonding minerals may contribute to the spectral uniqueness of this region. Two independent analyses of spectral images, linear spectral mixing and supervised classification based on the spectral shapes, showed that in addition to the well-known spectral endmember regions in this image (western Arabia, south Acidalia, and Sinus Meridiani), Deucalionis Regio has spectral properties that are unique enough to make it a principle endmember unit. In those earlier works, Deucalionis Regio was referred to as 'Meridiani Border.' Analysis of thermal inertia, rock abundance, and albedo information derived from Viking images and Infrared Thermal Mapper (IRTM) data obtained 1977-80 also indicate that Deucalionis Regio has a surface of distinctly different physical properties when compared to Arabia, Sinus Meridiani, and Acidalia. Deucalionis Regio has a thermal inertia equivalent to the Martian average, a low rock abundance (less than 5 percent), and an intermediate albedo and color. Considerable effort by previous investigators has revealed a consistent model for the surface (upper few cm) properties of the endmember reigons Arabia, Sinus Meridiani, and Acidalia. Compared with these regions, we consider that Deucalionis Regio is not a region of either (1) unconsolidated, fine bright dust like Arabia, (2) considerable windblown unconsolidated sand like Sinus Meridiani, or (3) a rocky-and-sandy surface like Acidalia. Thus, we are forced to consider that either the surface of Deucalionis Regio is made of unconsolidated fine to medium sand (about 250 microns) of an unusual and previously unreported color and albedo, or that the surface is crusted, fine-grained weathered soil, and the thermal inertia is an indicator of the degree to which the surface sediments have become indurated. We favor the latter

    Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    Get PDF
    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991

    Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    Get PDF
    Mars Pathfinder will place a single lander on the surface of Mars on July 4, 1997, following a December 1996 launch. As a result of the very successful first Mars Pathfinder Landing Site Workshop, the project has selected the Ares Vallis outflow channel in Chryse Planitia as the landing site. This location is where a large catastrophic outflow channel debouches into the northern lowlands. A second workshop and series of field trips, entitled Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, were held in Spokane and Moses Lake, Washington. The purpose of the workshop was to provide a focus for learning as much as possible about the Ares Vallis region on Mars before landing there. The rationale is that the more that can be learned about the general area prior to landing, the better scientists will be able interpret the observations made by the lander and rover and place them in the proper geologic context. The field trip included overflights and surface investigations of the Channeled Scabland (an Earth analog for the martian catastrophic outflow channels), focusing on areas particularly analogous to Ares Vallis and the landing site. The overflights were essential for placing the enormous erosional and depositional features of the Channeled Scabland into proper three-dimensional context. The field trips were a joint educational outreach activity involving K-12 science educators, Mars Pathfinder scientists and engineers, and interested scientists from the Mars scientific community. Part 1 of the technical report on this workshop includes a description of the Mars Pathfinder mission, abstracts accepted for presentation at the workshop, an introduction to the Channeled Scabland, and field trip guides for the overflight and two field trips. This part, Part 2, includes the program for the workshop, summaries of the workshop technical sessions, a summary of the field trips and ensuing discussions, late abstracts of workshop presentations, reports on the education and public outreach activities carried out by the educators, and a list of the workshop and field trip participants

    Saltation transport on Mars

    Full text link
    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is one order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.Comment: 4 pages, 3 figure

    On the shape of barchan dunes

    Full text link
    Barchans are crescent-shaped sand dunes forming in aride regions with unidirectional wind and limited sand supply. We report analytical and numerical results for dune shapes under different environmental conditions as obtained from the so-called `minimal model' of aeolian sand dunes. The profiles of longitudinal vertical slices (i.e. along the wind direction) are analyzed as a function of wind speed and sand supply. Shape transitions can be induced by changes of mass, wind speed and sand supply. Within a minimal extension of the model to the transverse direction the scale-invariant profile of transverse vertical cuts can be derived analytically.Comment: to appear in J. Phys.: Condens. Matter 17 (2005

    The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact

    Get PDF
    The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiositys traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit
    corecore