23,259 research outputs found

    Stiffened plating under combined in-plane and lateral loading

    Get PDF
    Imperial Users onl

    Renal Function in Suckling and Fasting Pups of the Northern Elephant Seal

    Get PDF
    Elephant seals fast for prolonged periods without access to water. This is made possible, in part, by reductions in urine production. However, the mechanisms involved in reducing urine production are not understood. In this study, glomerular filtration rate (GFR) was measured in five northern elephant seal pups (Mirounga angustirostris) via the inulin clearance technique. Measurements were made during day 9 and day 18–22 of nursing and the second and eighth week of the postweaning fast. Plasma aldosterone and cortisol concentrations, quantified by radioimmunoassay, were measured in eight other weanlings during the second and eighth week of the fast. Mean GFR was 79.3±29.3 ml/min during the early suckling period and 78.2±17.1, 89.8±52.7, and 80.4±12.2 ml/min during the late suckling, early fasting and late fasting periods, respectively. Differences between nursing and fasting were insignificant, possibly because reduced protein oxidation during suckling and rapid recruitment of protein for tissue synthesis obviated the need for postprandial hyperfiltration. Alternatively, maintenance of GFR during fasting may facilitate urea concentration by compensating for reductions in the fractional excretion of urea. It is further hypothesized that aldosterone is primarily responsible for mediating renal water reabsorption in this system

    Angiotensin II and Aldosterone Increase with Fasting in Breeding Adult Male Northern Elephant Seals (Mirounga angustirostris)

    Get PDF
    The renin‐angiotensin‐aldosterone system (RAAS) appears to contribute significantly to osmoregulation of fasting northern elephant seal (Mirounga angustirostris) pups; however, RAAS has not been characterized in fasting adult seals. Therefore, this study examined the contribution of RAAS to water turnover rates in fasting adult male northern elephant seals. Blood samples were obtained twice during their breeding fast at an interval of 6.5 wk, and water efflux rate was estimated by isotopic dilution during the same period. Serum electrolytes (Na+, K+, Cl−) and osmolality were unaltered between the two sampling periods, indicating ionic and osmotic homeostasis during the fast. Despite the lack of an increase in vasopressin, serum angiotensin II and aldosterone were increased and were significantly and positively correlated. Changes in aldosterone concentration and water efflux rate were significantly and negatively correlated, suggesting that the greater the increase in aldosterone, the smaller the loss of water. Adult male seals maintain ionic and osmotic homeostasis similar to that of fasting weaned pups, and this homeostasis appears to be mediated, at least in part, by RAAS, which probably contributes to increased water retention as well. The hormonal mechanisms by which northern elephant seals maintain water and electrolyte balance during fasting conditions appear to be similar regardless of age

    The primordial deuterium abundance at z = 2.504 from a high signal-to-noise spectrum of Q1009+2956

    Get PDF
    The spectrum of the zem=2.63z_{\rm em} = 2.63 quasar Q1009+2956 has been observed extensively on the Keck telescope. The Lyman limit absorption system zabs=2.504z_{\rm abs} = 2.504 was previously used to measure D/H by Burles & Tytler using a spectrum with signal to noise approximately 60 per pixel in the continuum near Ly {\alpha} at zabs=2.504z_{\rm abs} = 2.504. The larger dataset now available combines to form an exceptionally high signal to noise spectrum, around 147 per pixel. Several heavy element absorption lines are detected in this LLS, providing strong constraints on the kinematic structure. We explore a suite of absorption system models and find that the deuterium feature is likely to be contaminated by weak interloping Ly {\alpha} absorption from a low column density H I cloud, reducing the expected D/H precision. We find D/H = 2.48−0.35+0.41×10−52.48^{+0.41}_{-0.35}\times10^{-5} for this system. Combining this new measurement with others from the literature and applying the method of Least Trimmed Squares to a statistical sample of 15 D/H measurements results in a "reliable" sample of 13 values. This sample yields a primordial deuterium abundance of (D/H)p=(2.545±0.025)×10−5_{\rm p} = (2.545 \pm 0.025)\times10^{-5}. The corresponding mean baryonic density of the Universe is Ωbh2=0.02174±0.00025\Omega_{\rm b}h^2 = 0.02174\pm0.00025. The quasar absorption data is of the same precision as, and marginally inconsistent with, the 2015 CMB Planck (TT+lowP+lensing) measurement, Ωbh2=0.02226±0.00023\Omega_{\rm b}h^2 = 0.02226\pm0.00023. Further quasar and more precise nuclear data are required to establish whether this is a random fluctuation.Comment: accepted by MNRAS, 18 pages, 12 figures, 6 table

    A global data set of soil particle size properties

    Get PDF
    A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties

    Parents’ and carers’ attitudes to the use of digital technology and its role in the care of children with complex needs.

    Get PDF
    Abstract Introduction: Parent/carers of disabled children want timely and personalized support. Research suggests that technology may address some limitations associated with traditional methods of communication with therapists (e.g. letter, telephone). This exploratory study examined United Kingdom (UK) parents and carers views on the use of digital technology (i.e. computers/phones) in supporting their child and the potential for its greater use in the care of children with complex needs. Methods: An online survey was distributed via special schools and support forums/networks. Questions explored use of and attitudes to digital technology in the care of children with complex needs. Descriptive statistical analyses and content analyses were undertaken on the data. Results: Respondents were 43 parents/carers whose children used rehabilitation services prior to the COVID-19 pandemic. The majority used digital technology frequently to support their child and saw the potential for greater use in rehabilitation services – provided this was not at the expense of in-person therapist contact. Conclusion: Parents and carers held positive views of digital technology as a tool to support their child and enhance rehabilitation services. Recommendations include regular service consultation on parental/child attitudes to digital service delivery and longitudinal studies to assess related health outcomes

    Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling

    Get PDF
    Although ephemeral catchments are widespread in arid and semiarid climates, the relationship of their water balance with climate, geology, topography, and land cover is poorly known. Here we use 4 years (2011–2014) of rainfall, streamflow, and groundwater level measurements to estimate the water balance components in two adjacent ephemeral catchments in south-eastern Australia, with one catchment planted with young eucalypts and the other dedicated to grazing pasture. To corroborate the interpretation of the observations, the physically based hydrological model CATHY was calibrated and validated against the data in the two catchments. The estimated water balances showed that despite a significant decline in groundwater level and greater evapotranspiration in the eucalypt catchment (104–119% of rainfall) compared with the pasture catchment (95–104% of rainfall), streamflow consistently accounted for 1–4% of rainfall in both catchments for the entire study period. Streamflow in the two catchments was mostly driven by the rainfall regime, particularly rainfall frequency (i.e., the number of rain days per year), while the downslope orientation of the plantation furrows also promoted runoff. With minimum calibration, the model was able to adequately reproduce the periods of flow in both catchments in all years. Although streamflow and groundwater levels were better reproduced in the pasture than in the plantation, model-computed water balance terms confirmed the estimates from the observations in both catchments. Overall, the interplay of climate, topography, and geology seems to overshadow the effect of land use in the study catchments, indicating that the management of ephemeral catchments remains highly challenging

    Ground-state cooling of a trapped ion Using long-wavelength radiation

    Get PDF
    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of nÂŻ=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system
    • 

    corecore