8,497 research outputs found

    Charles M. Breder, Jr.: Bahamas and Florida

    Get PDF
    Dr. Charles M. Breder, a well known ichthyologist, kept meticulous field diaries throughout his career. This publication is a transcription of field notes recorded during the Bacon Andros Expeditions, and trips to Florida, Ohio and Illinois during the 1930s. Breder's work in Andros included exploration of a "blue hole", inland ecosystems, and collection of marine and terrestrial specimens. Anecdotes include descriptions of camping on the beach, the "filly-mingoes" (flamingos) of Andros Island, the Marine Studios of Jacksonville, FL, a trip to Havana, and the birth of seahorses. This publication is part of a series of transcriptions of Dr. Breder's diaries. (PDF contains 55 pages

    Many-body effects on the capacitance of multilayers made from strongly correlated materials

    Full text link
    Recent work by Kopp and Mannhart on novel electronic systems formed at oxide interfaces has shown interesting effects on the capacitances of these devices. We employ inhomogeneous dynamical mean-field theory to calculate the capacitance of multilayered nanostructures. These multilayered nanostructures are composed of semi-infinite metallic leads coupled via a strongly correlated dielectric barrier region. The barrier region can be adjusted from a metallic regime to a Mott insulator through adjusting the interaction strength. We examine the effects of varying the barrier width, temperature, potential difference, screening length, and chemical potential. We find that the interaction strength has a relatively strong effect on the capacitance, while the potential and temperature show weaker dependence.Comment: 19 pages, 7 figures, REVTe

    Hot phonon decay in supported and suspended exfoliated graphene

    Get PDF
    Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attributed to the rapid electron-phonon thermalisation in the system. The second timescale is found to be due to the slow decay of hot phonons. Using a simple theoretical model we calculate the hot phonon decay rate and show that it is significantly faster in monolayer flakes than in multilayer ones. In contrast to recent claims, we show that this enhanced decay rate is not due to the coupling to substrate phonons, since we have also seen the same effect in suspended flakes. Possible intrinsic decay mechanisms that could cause such an effect are discussed.Comment: 4 pages, 3 figure

    Automated system and process for heterotrophic growth of plant tissue

    Get PDF
    A micropropagation system and process for promoting the growth of plant tissue in a sterile environment is provided. The system includes a bioreactor in which the explant tissue is contained and grown. A plurality of fluid reservoirs are connected to the bioreactor for supplying sugar, nutrients, hormones, and water to the plant material. A controller and an analyzer are also included for automating the system by controlling flow rates and by monitoring media concentrations and levels within the bioreactor. Specifically, the controller is capable of monitoring system conditions and making the desired corrections by receiving data from the chemical analyzer. In particular, the controller is capable of calculating and maintaining volume levels of liquid growth media within the bioreactor chamber and maintaining the proper concentrations and proportions of components in the growth media

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure

    Numerical Regularization of Electromagnetic Quantum Fluctuations in Inhomogeneous Dielectric Media

    Get PDF
    Electromagnetic Casimir stresses are of relevance to many technologies based on mesoscopic devices such as MEMS embedded in dielectric media, Casimir induced friction in nano-machinery, micro-fluidics and molecular electronics. Computation of such stresses based on cavity QED generally require numerical analysis based on a regularization process. A new scheme is described that has the potential for wide applicability to systems involving realistic inhomogeneous media. From a knowledge of the spectrum of the stationary modes of the electromagnetic field the scheme is illustrated by estimating numerically the Casimir stress on opposite faces of a pair of perfectly conducting planes separated by a vacuum and the change in this result when the region between the plates is filled with an incompressible inhomogeneous non-dispersive dielectric.Comment: 5 pages, 2 figures, submitted to PR

    Using humanoid robots to study human behavior

    Get PDF
    Our understanding of human behavior advances as our humanoid robotics work progresses-and vice versa. This team's work focuses on trajectory formation and planning, learning from demonstration, oculomotor control and interactive behaviors. They are programming robotic behavior based on how we humans “program” behavior in-or train-each other

    X 1908+075: An X-ray Binary with a 4.4 day Period

    Get PDF
    X 1908+075 is an optically unidentified and highly absorbed X-ray source that appears in early surveys such as Uhuru, OSO-7, Ariel V, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range of 2-12 mCrab at 2-10 keV, and the position was localized to ~ 0.5 degrees. We use the Rossi X-ray Timing Explorer (RXTE) All Sky Monitor (ASM) to confirm our expectation that a particular Einstein IPC detection (1E 1908.4+0730) provides the correct position for X 1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~ 8 mCrab (1.5-12 keV) over a 3 year interval beginning in 1996 February. Furthermore, we detect a period of 4.400 +- 0.001 days with a false alarm probability < 1.0e-7 . The folded light curve is roughly sinusoidal, with an amplitude that is 22 % of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X 1908+075 is an X-ray binary with a high mass companion star.Comment: 6 pages, two-column,"emulateapj" style, submitted to Ap

    Magnetic Helicity Conservation and Astrophysical Dynamos

    Get PDF
    We construct a magnetic helicity conserving dynamo theory which incorporates a calculated magnetic helicity current. In this model the fluid helicity plays a small role in large scale magnetic field generation. Instead, the dynamo process is dominated by a new quantity, derived from asymmetries in the second derivative of the velocity correlation function, closely related to the `twist and fold' dynamo model. The turbulent damping term is, as expected, almost unchanged. Numerical simulations with a spatially constant fluid helicity and vanishing resistivity are not expected to generate large scale fields in equipartition with the turbulent energy density. The prospects for driving a fast dynamo under these circumstances are uncertain, but if it is possible, then the field must be largely force-free. On the other hand, there is an efficient analog to the α−Ω\alpha-\Omega dynamo. Systems whose turbulence is driven by some anisotropic local instability in a shearing flow, like real stars and accretion disks, and some computer simulations, may successfully drive the generation of strong large scale magnetic fields, provided that ∂rΩ>0\partial_r\Omega>0. We show that this criterion is usually satisfied. Such dynamos will include a persistent, spatially coherent vertical magnetic helicity current with the same sign as −∂rΩ-\partial_r\Omega, that is, positive for an accretion disk and negative for the Sun. We comment on the role of random magnetic helicity currents in storing turbulent energy in a disordered magnetic field, which will generate an equipartition, disordered field in a turbulent medium, and also a declining long wavelength tail to the power spectrum. As a result, calculations of the galactic `seed' field are largely irrelevant.Comment: 28 pages, accepted by The Astrophysical Journa
    • 

    corecore