41 research outputs found
Absorption lines from magnetically-driven winds in X-ray binaries
High resolution X-ray spectra of black hole X-ray binaries (BHBs) show
blueshifted absorption lines from disk winds which seem to be equatorial. Winds
occur in the Softer (disk-dominated) states of the outburst and are less
prominent or absent in the Harder (power-law dominated) states. We use
self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain
the disk winds in BHBs. In our models, the density at the base of the outflow
from the accretion disk is not a free parameter, but is determined by solving
the full set of dynamical MHD equations. Thus the physical properties of the
outflow are controlled by the global structure of the disk. We studied
different MHD solutions characterized by different values of (a) the disk
aspect ratio () and (b) the ejection efficiency (). We use two
kinds of MHD solutions depending on the absence (cold solution) or presence
(warm solution) of heating at the disk surface. Such heating could be from e.g.
dissipation of energy due to MHD turbulence in the disk or from illumination.
We use each of these MHD solutions to predict the physical parameters of an
outflow; put limits on the ionization parameter (), column density and
timescales, motivated by observational results; and thus select regions within
the outflow which are consistent with the observed winds. The cold MHD
solutions cannot account for winds due to their low ejection efficiency. But
warm solutions can explain the observed physical quantities in the wind because
they can have sufficiently high values of (, implying larger
mass loading at the base of the outflow). Further from our thermodynamic
equilibrium curve analysis for the outflowing gas, we found that in the Hard
state a range of is thermodynamically unstable, and had to be excluded.
This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix.
Accepted for publication in A&
GRMHD simulations of accretion onto Sgr A*: How important are radiative losses?
We present general relativistic magnetohydrodynamic (GRMHD) numerical
simulations of the accretion flow around the supermassive black hole in the
Galactic centre, Sagittarius A* (Sgr A*). The simulations include for the first
time radiative cooling processes (synchrotron, bremsstrahlung, and inverse
Compton) self-consistently in the dynamics, allowing us to test the common
simplification of ignoring all cooling losses in the modeling of Sgr A*. We
confirm that for Sgr A*, neglecting the cooling losses is a reasonable
approximation if the Galactic centre is accreting below ~10^{-8} Msun/yr i.e.
Mdot < 10^{-7} Mdot_Edd. But above this limit, we show that radiative losses
should be taken into account as significant differences appear in the dynamics
and the resulting spectra when comparing simulations with and without cooling.
This limit implies that most nearby low-luminosity active galactic nuclei are
in the regime where cooling should be taken into account.
We further make a parameter study of axisymmetric gas accretion around the
supermassive black hole at the Galactic centre. This approach allows us to
investigate the physics of gas accretion in general, while confronting our
results with the well studied and observed source, Sgr A*, as a test case. We
confirm that the nature of the accretion flow and outflow is strongly dependent
on the initial geometry of the magnetic field. For example, we find it
difficult, even with very high spins, to generate powerful outflows from discs
threaded with multiple, separate poloidal field loops.Comment: Resubmitted to MNRAS, including modifications in response to referee
report. 13 pages, 15 figure
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
Current Status of Simulations
As the title suggests, the purpose of this chapter is to review the current
status of numerical simulations of black hole accretion disks. This chapter
focuses exclusively on global simulations of the accretion process within a few
tens of gravitational radii of the black hole. Most of the simulations
discussed are performed using general relativistic magnetohydrodynamic (MHD)
schemes, although some mention is made of Newtonian radiation MHD simulations
and smoothed particle hydrodynamics. The goal is to convey some of the exciting
work that has been going on in the past few years and provide some speculation
on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern
workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012
Modelling the compact jet in MAXI J1836-194 with disc-driven shocks
The black hole candidate MAXI J1836-194 was discovered in 2011 when it went into an outburst, and was the subject of numerous, quasi-simultaneous, multi-wavelength observations in the radio, infrared, optical, and X-rays. In this paper, we model its multi-wavelength radio to optical spectral energy distributions (SEDs) with an internal shock jet model (ISHEM; Malzac 2014). The jet emission is modelled on five dates of the outburst, during which the source is in the hard and hard intermediate X-ray spectral states. The model assumes that fluctuations of the jet velocity are driven by the variability in the accretion flow which is traced by the observed X-ray timing properties of the source. While the global shape of the SED is well reproduced by this model for all the studied observations, the variations in bolometric flux and typical energies require at least two parameters to evolve during the outburst. Here, we investigate variations of the jet power and mean Lorentz factor, which are both found to increase with the source luminosity. Our results are compatible with the evolution of the jet Lorentz factor reported in earlier studies of this source. However, due to the large degeneracy of the parameters of the ISHEM model, our proposed scenario is not unique
Black hole spin: theory and observation
In the standard paradigm, astrophysical black holes can be described solely
by their mass and angular momentum - commonly referred to as `spin' - resulting
from the process of their birth and subsequent growth via accretion. Whilst the
mass has a standard Newtonian interpretation, the spin does not, with the
effect of non-zero spin leaving an indelible imprint on the space-time closest
to the black hole. As a consequence of relativistic frame-dragging, particle
orbits are affected both in terms of stability and precession, which impacts on
the emission characteristics of accreting black holes both stellar mass in
black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN).
Over the last 30 years, techniques have been developed that take into account
these changes to estimate the spin which can then be used to understand the
birth and growth of black holes and potentially the powering of powerful jets.
In this chapter we provide a broad overview of both the theoretical effects of
spin, the means by which it can be estimated and the results of ongoing
campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes -
From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer:
Astrophysics and Space Science Library. Additional corrections mad
Sign changes of Kloosterman sums and exceptional characters
We prove that the existence of exceptional real zeros of Dirichlet Lfunctions would lead to cancellations in the sum p≤x Kl(1, p) of Kloosterman sums over primes, and also to sign changes of Kl(1, n), where n runs over integers with exactly two prime factors. Our arguments involve a variant of Bombieri’s sieve, bounds for twisted sums of Kloosterman sums, and work of Fouvry and Michel on sums of |Kl(1, n)|