595 research outputs found

    Simulating quantum correlations as a distributed sampling problem

    Full text link
    It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, post-selection or non-local boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a non-local box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states.Comment: 13 pages, 2 figure

    Simulation of bipartite qudit correlations

    Get PDF
    We present a protocol to simulate the quantum correlations of an arbitrary bipartite state, when the parties perform a measurement according to two traceless binary observables. We show that log⁥(d)\log(d) bits of classical communication is enough on average, where dd is the dimension of both systems. To obtain this result, we use the sampling approach for simulating the quantum correlations. We discuss how to use this method in the case of qudits.Comment: 7 page

    Long and short paths in uniform random recursive dags

    Full text link
    In a uniform random recursive k-dag, there is a root, 0, and each node in turn, from 1 to n, chooses k uniform random parents from among the nodes of smaller index. If S_n is the shortest path distance from node n to the root, then we determine the constant \sigma such that S_n/log(n) tends to \sigma in probability as n tends to infinity. We also show that max_{1 \le i \le n} S_i/log(n) tends to \sigma in probability.Comment: 16 page

    Statistical properties of determinantal point processes in high-dimensional Euclidean spaces

    Full text link
    The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of N×NN\times N matrices and then extrapolate to N→∞N\to\infty. This formulation allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces of dimension dd. We also implement an algorithm due to Hough \emph{et. al.} \cite{hough2006dpa} for generating configurations of determinantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere point process for d=1d = 1 to 4. This homogeneous, isotropic determinantal point process, discussed also in a companion paper \cite{ToScZa08}, is the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix from the circular unitary ensemble (CUE). In addition to the nearest-neighbor probability distribution, we are able to calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process and discuss these as the dimension dd is varied. The results in this paper accompany and complement analytical properties of higher-dimensional determinantal point processes developed in \cite{ToScZa08}.Comment: 42 pages, 17 figure

    Devroye Inequality for a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we prove an inequality, which we call "Devroye inequality", for a large class of non-uniformly hyperbolic dynamical systems (M,f). This class, introduced by L.-S. Young, includes families of piece-wise hyperbolic maps (Lozi-like maps), scattering billiards (e.g., planar Lorentz gas), unimodal and H{\'e}non-like maps. Devroye inequality provides an upper bound for the variance of observables of the form K(x,f(x),...,f^{n-1}(x)), where K is any separately Holder continuous function of n variables. In particular, we can deal with observables which are not Birkhoff averages. We will show in \cite{CCS} some applications of Devroye inequality to statistical properties of this class of dynamical systems.Comment: Corrected version; To appear in Nonlinearit

    Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functions, then it holds uniformly in the function spaces. In the last appendix we prove that for the subclass of one-dimensional systems studied in \cite{young} the density of the absolutely continuous invariant measure belongs to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version; to appear in Nonlinearit

    PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers

    Get PDF
    The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection

    Traveling Waves, Front Selection, and Exact Nontrivial Exponents in a Random Fragmentation Problem

    Full text link
    We study a random bisection problem where an initial interval of length x is cut into two random fragments at the first stage, then each of these two fragments is cut further, etc. We compute the probability P_n(x) that at the n-th stage, each of the 2^n fragments is shorter than 1. We show that P_n(x) approaches a traveling wave form, and the front position x_n increases as x_n\sim n^{\beta}{\rho}^n for large n. We compute exactly the exponents \rho=1.261076... and \beta=0.453025.... as roots of transcendental equations. We also solve the m-section problem where each interval is broken into m fragments. In particular, the generalized exponents grow as \rho_m\approx m/(\ln m) and \beta_m\approx 3/(2\ln m) in the large m limit. Our approach establishes an intriguing connection between extreme value statistics and traveling wave propagation in the context of the fragmentation problem.Comment: 4 pages Revte

    Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation

    Get PDF
    We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Levy alpha-stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler function is the natural survival probability leading to time-fractional diffusion equations. Transformation methods for Mittag-Leffler random variables were found later than the well-known transformation method by Chambers, Mallows, and Stuck for Levy alpha-stable random variables and so far have not received as much attention; nor have they been used together with the latter in spite of their mathematical relationship due to the geometric stability of the Mittag-Leffler distribution. Combining the two methods, we obtain an accurate approximation of space- and time-fractional diffusion processes almost as easy and fast to compute as for standard diffusion processes.Comment: 7 pages, 5 figures, 1 table. Presented at the Conference on Computing in Economics and Finance in Montreal, 14-16 June 2007; at the conference "Modelling anomalous diffusion and relaxation" in Jerusalem, 23-28 March 2008; et
    • 

    corecore