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PAC-BAYESIAN BOUNDS FOR RANDOMIZED EMPIRICAL

RISK MINIMIZERS

PIERRE ALQUIER

Abstract. The aim of this paper is to generalize the PAC-Bayesian theorems
proved by Catoni [6, 8] in the classification setting to more general problems
of statistical inference. We show how to control the deviations of the risk of
randomized estimators. A particular attention is paid to randomized estima-
tors drawn in a small neighborhood of classical estimators, whose study leads
to control the risk of the latter. These results allow to bound the risk of very

general estimation procedures, as well as to perform model selection.
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2 P. ALQUIER

1. Introduction

The aim of this paper is to perform statistical inference with observations in a
possibly large dimensional space. Let us first introduce the notations.

1.1. General notations. Let N ∈ N
∗ be the number of observations. Let (Z,B)

be a measurable space and P1, ..., PN be N probability measures on this space,
unknown to the statistician. We assume that

(Z1, ..., ZN )

is the canonical process on
(

ZN ,B⊗N , P1 ⊗ ...⊗ PN

)

.

Definition 1.1. Let us put

P = P1 ⊗ ...⊗ PN ,

and

P =
1

N

N
∑

i=1

δZi
.

We want to perform statistical inference on a general parameter space Θ, with
respect to some loss function

ℓθ : Z → R, θ ∈ Θ.

Definition 1.2 (Risk functions). We introduce, for any θ ∈ Θ,

r(θ) = P (ℓθ) =
1

N

N
∑

i=1

ℓθ (Zi) ,

the empirical risk function, and

R(θ) = P(ℓθ) =
1

N

N
∑

i=1

Pi (ℓθ) ,

the risk function.

We now describe three classical problems in statistics that fit the general context
described above.

Example 1.1 (Classification). We assume that Z = X × Y where X is a set of
objects and Y a finite set of possible labels for these objects. Consider a set of
classification functions {fθ : X → Y, θ ∈ Θ} which assign to each object a label.
Let us put, for any z = (x, y) ∈ Z, ℓθ(z) = ψ (fθ(x), y) where ψ is some symmetric
discrepancy measure. The most usual case is to use the 0-1 loss function ψ(y, y′) =
δy(y′) . If moreover |Y| = 2 we can decide that Y = {−1,+1} and set ψ(y, y′) =
1R∗

+
(yy′) . However, in many practical situations, algorithmic considerations lead

to use a convex upper bound of this loss function, like

ψ(y, y′) = (1 − yy′)+ = max(1 − yy′, 0), the ”hinge loss”,

ψ(y, y′) = exp(−yy′), the exponential loss,

ψ(y, y′) = (1 − yy′)2, the least square loss.

For example, Cortes and Vapnik [10] generalized the SVM technique to non-separable
data using the hinge loss, while Schapire, Freund, Bartlett and Lee [19] gave a sta-
tistical interpretation of boosting algorithm thanks to the exponential loss. See
Zhang [22] for a complete study of the performance of classification methods using
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these loss functions. Remark that in this case, fθ is allowed to take any real value,
and not only −1 or +1, although the labels Yi in the training set are either −1 or
+1.

Example 1.2 (Regression estimation). The context is the same except that the
label set Y is infinite, in most case it is R or an interval of R. Here, the most usual
case is the regression with quadratic loss, with ψ(y, y′) = (y − y′)2, however, more
general cases can be studied like the lp loss ψ(y, y′) = (y − y′)p for some p ≥ 1.

Example 1.3 (Density estimation). Here, we assume that P1 = ... = PN = P
and consequently that P = P⊗N , and we want to estimate the density f = dP/dµ
of P with respect to a known measure µ. We assume that we are given a set of
probability measures {Qθ, θ ∈ Θ} with densities qθ = dQθ/dµ and we use the loss
function ℓθ(z) = − log [qθ(z)]. Indeed in this case, we can write under suitable
hypotheses

R(θ) = P (− log ◦ qθ) = P

(

− log ◦
dQθ

dµ

)

= P

(

log ◦
dP

dQθ

)

+ P

(

log ◦
dµ

dP

)

= K (P,Qθ) − P (log ◦f) ,

showing that the risk is the Kullback-Leibler divergence between P and Qθ up to a
constant (the definition of K is reminded in this paper, see Definition 1.8 page 5).

In each case the objective is to estimate arg minR on the basis of the observations
Z1, ..., ZN - presumably using in some way or another the value of the empirical risk.
We have to notice that when the space Θ is large or complex (for example a vector
space with large dimension), argminR and arg min r can be very different. This
does not happen if Θ is simple (for example a vector space with small dimension),
but such a case is less interesting as we have to eliminate a lot of dimensions in Θ
before proceeding to statistical inference with no guarantees that these directions
are not relevant.

1.2. Statistical learning theory and PAC-Bayesian point of view. The
learning theory point of view introduced by Vapnik and Cervonenkis ([9], see Vap-
nik [21] for a presentation of the main results in English) gives a setting that proved
to be adapted to deal with estimation problems in large dimension. This point of
view received an important interest over the past few years, see for example the
well-known books of Devroye, Gyrfi and Lugosi [11], Friedman, Hastie and Tibshi-
rani [12] or more recently the paper by Boucheron, Bousquet and Lugosi [5] and
the references therein, for a state of the art.

The idea of Vapnik and Cervonenkis is to introduce a structure, namely a family
of submodels Θ1, Θ2, ... The problem of model selection then arises: we must
choose the submodel Θk in which the minimization of the empirical risk r will lead
to the smallest possible value for the real risk R. This choice requires to estimate
the complexity of submodels Θk. An example of complexity measure is the so-called
Vapnik Cervonenkis dimension or VC-dimension, see [9, 21].

The PAC-Bayesian point of view, introduced in the context of classification by
McAllester [16, 17] is based on the following remark: while classical measures of
complexity (like VC-dimension) require theoretical results on the submodels, the
introduction of a probability measure π on the model Θ allows to measure empiri-
cally the complexity of every submodel. In a more technical point of view, we will
see later that π allows a generalization of the so-called union bound (see [17] for
example). This point of view might be compared with Rissanen’s work on MDL
(Minimum Description Length, see [18]) making a link between statistical inference
and information theory, and − logπ(θ) can be seen as the length of a code for the
parameter θ (at least when Θ is finite).
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The PAC-Bayesian point of view was developed in more contexts (classification,
least square regression and density estimation) by Catoni [7], and then improved
in the context of classification by Catoni [6], Audibert [3] and in the context of
least square regression by Audibert [2] and of regression with a general loss in our
PhD thesis [1]. The most recent work in the context of classification by Catoni
[8] improves the upper-bound given on the risk of the PAC-Bayesian estimators,
leading to purely empirical bounds that allow to perform model selection with no
assumption on the probability measure P. The aim of this work is to extend these
results to the very general context of statistical inference introduced in subsection
1.1, that includes classification, regression with a general loss function and density
estimation.

Let us introduce our estimators.

Definition 1.3. Let us assume that we have a family of functions

ψi
θ : Z → R ∪ {+∞}

indexed by i in a finite or countable set I and by θ ∈ Θ. For every i ∈ I we choose:

θ̂i ∈ arg min
θ∈Θ

P
(

ψi
θ

)

.

Example 1.4 (Empirical risk minimization and model selection). If we take I =
{0} we can choose ψ0

θ(z) = lθ(z) and we obtain P
(

ψ0
θ

)

= r(θ) and so

θ̂0 = argmin
θ∈Θ

r(θ)

the empirical risk minimizer. In the case where the dimension of Θ is large, we can
choose several submodels indexed by a finite or countable family I: (Θi, i ∈ I). In
order to obtain

θ̂i = arg min
θ∈Θi

r(θ)

we can put

ψi
θ(.) =







lθ(.) if θ ∈ Θi

+∞ otherwise.

The problem of the selection of the θ̂i with the smallest possible risk (so-called
model selection problem) can be solved with the help of PAC-Bayesian bounds.

Note that PAC-Bayesian bounds given by Catoni [6, 7, 8] usually apply to ”ran-
domized estimators”. More formally, let us introduce a σ-algebra T on Θ and a
probability measure π on the measurable space (Θ, T ). We will need the following
definitions.

Definition 1.4. For any measurable set (E, E), we let M1
+(E) denote the set of

all probability measures on the measurable space (E, E).

Definition 1.5. In order to generalize the notion of estimator (a measurable func-
tion ZN → Θ), we call a randomized estimator any function ρ : ZN → M1

+(Θ)
that is a regular conditional probability measure. For the sake of simplicity, the
sample being given, we will write ρ instead of ρ (Z1, ..., ZN).

PAC-Bayesian bounds for randomized estimators are usually given for their mean
risk

∫

θ∈Θ

R(θ)dρ(θ),

whereas here we will rather focus on R(θ̃), where θ̃ is drawn from ρ and ρ is highly

concentrated around a ”classical” (deterministic) estimator θ̂i.
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1.3. Truncation of the risk. In this subsection, we introduce a truncated version
of the relative risk of two parameters θ and θ′.

Definition 1.6. We put, for any λ ∈ R
∗
+ and (θ, θ′) ∈ Θ2

Rλ(θ, θ′) = P

[

(ℓθ − ℓθ′) ∧
N

λ

]

.

Note of course that if P-almost surely, we have ℓθ − ℓθ′ ≤ N/λ then Rλ(θ, θ′) =
R(θ) −R(θ′).

In what follows, we will give empirical bounds on Rλ(θ, θ′) for some θ and θ′

chosen by some statistical procedure. One can wonder why we prefer to bound this
truncated version of the risk instead of R(θ)−R(θ′). The reason is the following. In
this paper, we want to give bounds that hold with no particular assumption on the
unknown data distribution P. However, it is clear that we cannot obtain a purely
empirical bound on R(θ) − R(θ′) with no assumption on the data distribution, as
it is shown by the following example.

Example 1.5. Let us choose c > 0 and λ > 0. We assume that P1 = ... = PN and
that Θ = {θ, θ′} with lθ′(z) = 0. We put lθ(Z) = cN with probability 1/N and 0
otherwise. Then we have R(θ′) = 0 and

R(θ) =
1

N
cN +

(

1 −
1

N

)

0 = c

while r(θ′) = 0 and with probability at least (1 − 1/N)N ≃ exp(−1) we also have
r(θ) = 0, this means that we cannot upper bound preciselyR(θ)−R(θ′) by empirical
quantities with no assumption.

So, we introduce the truncation of the risk. However, two remarks shall be made.
First, in the case of a bounded loss function ℓ, with a large enough ratio N/λ we
have Rλ(θ, θ′) = R(θ) −R(θ′).

In the general case, if we want to upper bound R(θ) − R(θ′) we can make ad-
ditional hypotheses on the data distribution, ensuring that we can dispose of a
(known) upper-bound :

∆λ(θ, θ′) ≥ R(θ) −R(θ′) −Rλ(θ, θ′)

as it is done in our PhD Thesis [1]. For the sake of completeness, such an upper
bound is given in the Appendix, page 28.

1.4. Main tools. In this subsection, we give two lemmas that will be useful in
order to build PAC-Bayesian theorems. First, let us recall the following definition.
In this whole subsection, we assume that (E, E) is an arbitrary measurable space.

Definition 1.7. For any measurable function h : E → R, for any measure m ∈
M1

+(E) we put

m(h) = sup
B∈R

∫

E

[h(x) ∧B]m(dx).

Definition 1.8 (Kullback-Leibler divergence). Given a measurable space (E, E),
we define , for any (m,n) ∈ [M1

+(E)]2, the Kullback-Leibler divergence function

K(m,n) =







∫

E

dm(e)

{

log

[

dm

dn
(e)

]}

if m≪ n,

+∞ otherwise.
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Lemma 1.1 (Legendre transform of the Kullback divergence function). For any

n ∈ M1
+(E), for any measurable function h : E → R such that n(exp ◦h) < +∞

we have

(1.1) logn(exp ◦h) = sup
m∈M1

+(E)

(

m(h) −K(m,n)

)

,

where by convention ∞−∞ = −∞. Moreover, as soon as h is upper-bounded on

the support of n, the supremum with respect to m in the right-hand side is reached

for the Gibbs distribution, nexp(h) given by:

∀e ∈ E,
dnexp(h)

dn
(e) =

exp[h(e)]

π(exp ◦h)
.

The proof of this lemma is given at the end of the paper, in a section devoted to
proofs (subsection 5.1 page 15). We now state another lemma that will be useful
in the sequel. First, we need the following definition.

Definition 1.9. We put, for any α ∈ R
∗
+,

Φα : ]−∞, 1/α[ → R

t 7→ −
log (1 − αt)

α
.

Note that Φα is invertible, that for any u ∈ R,

Φ−1
α (u) =

1 − exp (−αu)

α
≤ u,

and that 2(Φα(x)−x)
αx2 −−−→

x→0
1. Also note that for α > 0, Φα is convex and that

Φα(x) ≥ x. An elementary study of this function also proves that for any C > 0,
for any α ∈ ]0, 1/(2C)[ and any p ∈ [0, C] we have:

Φα(p) ≤ p+
αp2

2
.

We can now give the lemma.

Lemma 1.2. We have, for any λ ∈ R
∗
+, for any a ∈]0, 1], for any (θ, θ′) ∈ Θ2,

P exp

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

}

= 1.

The proof is almost trivial, we give it now in order to emphasize the role of the
truncation and of the change of variable.

Proof. For any λ ∈ R
∗
+, for any (θ, θ′) ∈ Θ2,

P exp

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

}

= P exp

{

N
∑

i=1

(

log

[

1 −
λ

N

(

(lθ − lθ′)(Zi) ∧
aN

λ

)]

− log

[

1 −
λ

N
Pi

(

(lθ − lθ′)(Zi) ∧
aN

λ

)]

)}

= P

[

N
∏

i=1

1 − λ
N

(

(lθ − lθ′)(Zi) ∧
aN
λ

)

1 − λ
N Pi

(

(lθ − lθ′)(Zi) ∧
aN
λ

)

]
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=
N
∏

i=1

Pi

[

1 − λ
N

(

(lθ − lθ′)(Zi) ∧
aN
λ

)

1 − λ
N Pi

(

(lθ − lθ′)(Zi) ∧
aN
λ

)

]

= 1.

�

Note that this lemma will be used as an alternative to Hoeffding’s or Bernstein’s
(see [13, 4]) inequalities in order to prove PAC inequalities.

1.5. A basic PAC-Bayesian Theorem. Let us integrate Lemma 1.2 with respect
to (θ, θ′) with a given probability measure n = π ⊗ π′ with (π, π′) ∈ [M1

+(Θ)]2.
Applying Fubini-Tonelli Theorem we obtain:

(1.2) P

{

∫

(θ,θ′)∈Θ2

d(π ⊗ π′)(θ, θ′) exp

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

}}

= 1.

This implies that for any (ρ, ρ′) ∈ [M1
+(Θ)]2,

P

{

∫

(θ,θ′)∈Θ2

d(ρ⊗ ρ′)(θ, θ′) exp

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

− log

[

d(ρ⊗ ρ′)

d(π ⊗ π′)
(θ, θ′)

]

}}

≤ 1.

(This inequality becomes an equality when π ≪ ρ and π′ ≪ ρ′.)

Theorem 1.3. Let us assume that we have (π, π′) ∈ M1
+(Θ)2, and two randomized

estimators ρ and ρ′. For any ε > 0, for any (a, λ) ∈]0, 1] × R
∗
+, with P(ρ ⊗ ρ′)-

probability at least 1− ε over the sample (Zi)i=1,...,N and the parameters (θ̃, θ̃′), we

have:

Rλ
a

(

θ̃, θ̃′
)

≤ Φ−1
λ
N

{

1

N

N
∑

i=1

Φ λ
N

[

(

ℓθ̃ − ℓθ̃′

)

(Zi) ∧
aN

λ

]

+
log
[

dρ
dπ

(

θ̃
)]

+ log
[

dρ′

dπ′

(

θ̃′
)]

+ log 1
ε

λ

}

.

In order to provide an interpretation of Theorem 1.3, let us give the following
corollary in the bounded case, which is obtained using basic properties of the func-
tion Φ given just after Definition 1.9 page 6. In this case, the parameter a is just
set to 1.

Corollary 1.4. Let us assume that for any (θ, z) ∈ Θ × Z, 0 < lθ(z) < C. Let us

assume that we have (π, π′) ∈ M1
+(Θ)2, and two randomized estimators ρ and ρ′.

For any ε > 0, for any λ ∈]0, N/(2C)], with P(ρ⊗ ρ′)-probability at least 1 − ε we

have:

R
(

θ̃
)

−R
(

θ̃′
)

≤ Φ−1
λ
N

{

r
(

θ̃
)

− r
(

θ̃′
)

+
λ

2N
P

[

(

lθ̃ − lθ̃′

)2
]

+
log
[

dρ
dπ

(

θ̃
)

]

+ log
[

dρ′

dπ′

(

θ̃′
)

]

+ log 1
ε

λ

}

.
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We can see that the difference of the ”true” risk of the randomized estimators θ̃
and θ̃′, drawn independently from ρ and ρ′, is upper bounded by the difference of
the empirical risk, plus a variance term and a complexity term expressed in terms
of the log of the density of the randomized estimator with respect to a given prior.
So Theorem 1.3 provides an empirical way to compare the theoretical performance
of two randomized estimators, leading to applications in model selection. This
paper is devoted to improvements of Theorem 1.3 (we will see in the sequel that
this theorem does not necessarily lead to optimal estimators) and to the effective
construction of estimators using variants of Theorem 1.3.

Now, note that the choice of the randomized estimators ρ and ρ′ is not straight-
forward. The following theorem, which gives an integrated variant of Theorem 1.3,
can be usefull for that purpose.

Theorem 1.5. Let us assume that we have (π, π′) ∈ M1
+(Θ)2. For any ε > 0, for

any (a, λ) ∈]0, 1]×R
∗
+, with P-probability at least 1− ε, for any (ρ, ρ′) ∈ M1

+(Θ)2,
∫

Θ2

Rλ
a
(θ, θ′)d(ρ⊗ ρ′)(θ, θ′)

≤ Φ−1
λ
N

{

∫

Θ2

1

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

d (ρ⊗ ρ′)(θ, θ′)

+
K(ρ, π) + K(ρ′, π′) + log 1

ε

λ

}

.

The proof is given in subsection 5.2 page 15.

1.6. Main results of the paper. In our PhD dissertation [1], a particular case
of Theorem 1.5 is given and applied to regression estimation with quadratic loss in
a bounded model of finite dimension d. In this particular case, it is shown that the
estimators based on the minimization of the right-hand side of Theorem 1.5 do not
achieve the optimal rate of convergence: d/N , but only (d logN)/N . A solution is
given by Catoni in [7] and consists in replacing the prior π by the so-called ”localized
prior” πexp(−βR) for a given β > 0. The main problem is that this choice leads to
the presence of non-empirical terms in the right-hand side, K(ρ, πexp(−βR)).

In Section 2, we give an empirical bound for this term K(ρ, πexp(−βR)). We also
give a heuristic that leads to this technique of localization.

In Section 3, we show how this result, combined with Theorem 1.5, leads to the
effective construction of an estimator that can reach optimal rates of convergence.

The proofs of the theorems stated in this paper are gathered in Section 5.

2. Empirical bound for the localized complexity and localized
PAC-Bayesian theorems

2.1. Mutual information between the sample and the parameter. Let us
consider Theorem 1.5 with ρ′ = π′ = δθ′ for a given parameter θ′. For the sake
of simplicity, let us assume in this subsection that we are in the bounded case
(lθ bounded by C). Theorem 1.5 ensures that, for any λ ∈]0, N/(2C)[, with P-
probability at least 1 − ε, for any ρ ∈ M1

+(Θ),

ρ (R) −R(θ′) ≤ ρ (r) − r(θ′) +
λ

2N
P

[
∫

Θ

(lθ − lθ′)2 dρ(θ)

]

+
K(ρ, π) + log 1

ε

λ
.

This is an incitation to choose

ρ = arg min
µ∈M1

+(Θ)

[

µ (r) +
λ

2N
P

[
∫

Θ

(lθ − lθ′)
2
dρ(θ)

]

+
K(µ, π)

λ

]

.
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However, if we choose to neglect the variance term, we may consider the following
randomized estimator:

ρ = arg min
µ∈M1

+(Θ)

[

µ (r) +
K(µ, π)

λ

]

.

Actually, in this case, Lemma 1.1 leads to:

ρ = πexp(−λr).

Let us remark that, for any (ρ, π) ∈ M1
+(Θ) we have:

(2.1) P
[

K(ρ, π)
]

= P
[

K(ρ, P (ρ))
]

+ K(P (ρ), π).

This implies that, for a given data-dependent ρ, the optimal deterministic measure
π is P (ρ) in the sense that it minimizes the expectation of K(ρ, π) (left-hand side of
Equation 2.1), making it equal to the expectation of K(ρ, P (ρ)). This last quantity
is the mutual information between the estimator and the sample.

So, for ρ = πexp(−λr), this is an incitation to replace the prior π with P
(

πexp(−λr)

)

.
It is then natural to approximate this distribution by πexp(−λR).

In what follows, we replace π by πexp(−βR) for a given β > 0, keeping one more
degree of freedom. Now, note that Theorem 1.5 gives:

ρ (R) −R(θ′)

≤ ρ (r) − r(θ′) +
λ

2N
P

[
∫

Θ

(lθ − lθ′)
2
dρ(θ)

]

+
K
(

ρ, πexp(−βR)

)

+ log 1
ε

λ

and note that the upper bound is no longer empirical (observable to the statistician).
The aim of the next subsection is to upper bound K

(

ρ, πexp(−βR)

)

by an empir-
ical bound in a general setting.

2.2. Empirical bound of the localized complexity.

Definition 2.1. Let us put, for any (a, λ) ∈]0, 1] ×R
∗
+ and (θ, θ′) ∈ Θ2,

va, λ
N

(θ, θ′) =
2N

λ

{

λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

−
[

r(θ) − r(θ′)
]

}

.

Theorem 2.1. Let us choose a distribution π ∈ M1
+(Θ). For any ε > 0, for any

(a, γ, β) ∈]0, 1] × R
∗
+ × R

∗
+ such that β < γ, with P-probability at least 1 − ε, for

any ρ ∈ M1
+(Θ),

K
(

ρ, πexp(−βR)

)

≤ BKa,β,γ(ρ, π) +
β

γ − β
log

1

ε

where

BKa,β,γ(ρ, π) =

(

1 −
β

γ

)−1{

K
(

ρ, πexp(−βr)

)

+ log

∫

Θ

πexp(−βr)(dθ
′) exp

[
∫

Θ

ρ(dθ)

(

βγ

2N
va, γ

N
(θ, θ′) + β∆ γ

a
(θ, θ′)

)]}

.

The proof is given in the section dedicated to proofs, more precisely in subsection
5.3 page 16. Note that the localized entropy term is controlled by its empirical
counterpart together with a variance term.

Before combining this result with Theorem 1.5, we give the analogous result for
the non-integrated case, which proof is also given in subsection 5.3.
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Theorem 2.2. Let us choose a distribution π ∈ M1
+(Θ) and a randomized esti-

mator ρ. For any ε > 0 and η > 0, for any (a, γ, β) ∈]0, 1] × R
∗
+ × R

∗
+ such that

β < γ, with Pρ-probability at least 1 − ε,

log

[

dρ

dπexp[−βR]
(θ̃)

]

≤ Da,β,γ(ρ, π)(θ̃) +
β

γ − β
log

1

ε

where

Da,β,γ(ρ, π)(θ̃) =

(

1 −
β

γ

)−1{

log

[

dρ

dπexp[−βr]
(θ̃)

]

+ log

∫

Θ

πexp(−βr)(dθ
′) exp

[

βγ

2N
va, γ

N
(θ̃, θ′) + β∆ γ

a
(θ̃, θ′)

]}

.

2.3. Localized PAC-Bayesian theorems.

Definition 2.2. From now on, we will deal with model selection. We assume that
we have a family of submodels of Θ: (Θi, i ∈ I) where I is finite or countable. We
also choose a probability measure µ ∈ M1

+(I), and assume that we have a prior

distribution πi ∈ M1
+(Θi) for every i.

We choose

π =
∑

i∈I

µ(i)πi
exp(−βiR)

and apply Theorem 1.3 that we combine with Theorem 2.2 by a union bound
argument, to obtain the following result.

Theorem 2.3. Let us assume that we have randomized estimators (ρi)i∈I such that

ρi(Θi) = 1, for any ε > 0, for any (a, β, β′, γ, γ′, λ) ∈]0, 1]× (R∗
+)5 such that β < γ

and β′ < γ′, with P
⊗

i∈I ρi-probability at least 1 − ε over the sample (Zn)n=1,...,N

and the parameters (θ̃i)i∈I , for any (i, i′) ∈ I2 we have:

Rλ
a

(

θ̃i, θ̃i′
)

≤ Φ−1
λ
N

{

r
(

θ̃i

)

− r
(

θ̃i′
)

+
λ

2N
va, λ

N

(

θ̃i, θ̃i′
)

+
1

λ

[

Da,β,γ(ρ, πi)
(

θ̃i

)

+ Da,β′,γ′(ρ, πi′)
(

θ̃i′
)

+

(

1 +
β

γ − β
+

β′

γ′ − β′

)

log
3

εµ(i)µ(i′)

]}

.

In the same way, we can give an integrated variant, using Theorem 1.5 and
Theorem 2.1.

Theorem 2.4. For any ε > 0, for any (a, β, β′, γ, γ′, λ) ∈]0, 1] × (R∗
+)5 such that

β < γ and β′ < γ′, with P-probability at least 1 − ε, for any (i, i′) ∈ I2 and

(ρ, ρ′) ∈ M1
+(Θi) ×M1

+(Θi′),

∫

Θ2

d(ρ⊗ ρ′)(θ, θ′)Rλ
a
(θ, θ′)

≤ Φ−1
λ
N

{

ρ(r) − ρ′(r) +
λ

2N

∫

Θ2

d(ρ⊗ ρ′)(θ, θ′) va, λ
N

(θ, θ′)

+
BKa,β,γ(ρ, πi) + BKa,β′,γ′(ρ′, πi′ ) +

(

1 + β
γ−β + β′

γ′−β′

)

log 3
εµ(i)µ(i′)

λ

}

.
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2.4. Choice of the parameters. In this subsection, we explain how to choose the
parameters λ, β, β′, γ and γ′ in Theorems 2.3 and 2.4. In some really simple situa-
tions (parametric model with strong assumptions on P), this choice can be made on
the basis of theoretical considerations, however, in many realistic situations, such
hypothesis cannot be made and we would like to optimize the upper bound in the
Theorems with respect to the parameters. This would lead to data-dependant val-
ues for the parameters, and this is not allowed by Theorems 2.4 and 2.3. Catoni [8]
proposes to make a union bound on a grid of values of the parameters, thus allowing
optimization with respect to these parameters. We apply this idea to Theorem 2.4,
and obtain the following result.

Theorem 2.5. Let us choose a measure ν ∈ M1
+(Θ) that is supported by a finite

or countable set of points, supp(ν). Let us assume that we have randomized esti-

mators (ρi,β)i∈I,β∈supp(ν) such that ρi,β(Θi) = 1. For any ε > 0 and a ∈]0, 1], with

P
⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1− ε over the sample (Zn)n=1,...,N and the

parameters (θ̃i,β)i∈I,β∈supp(ν), for any (i, i′) ∈ I2 and (β, β′) ∈ supp(ν)2 we have:

Rλ
a

(

θ̃i,β , θ̃i′,β′

)

≤ B
(

(i, β), (i′, β′)
)

= inf
λ ∈]0, +∞[
γ ∈]β,+∞[

γ′ ∈]β′, +∞[

Φ−1
λ
N

{

r
(

θ̃i,β

)

− r
(

θ̃i′,β′

)

+
λ

2N
va, λ

N

(

θ̃i,β , θ̃i′,β′

)

+
1

λ

[

Da,β,γ(ρi,β , π
i)
(

θ̃i,β

)

+ Da,β′,γ′(ρi,β′ , πi′)
(

θ̃i′,β′

)

+

(

1 +
β

γ − β
+

β′

γ′ − β′

)

log
3

εν(λ)ν(γ)ν(β)ν(γ′)ν(β′)µ(i)µ(i′)

]}

.

2.5. Introduction of the complexity function. It is convenient to remark that
we can dissociate the optimization with respect to the different parameters in The-
orem 2.5 thanks to the introduction of an appropriate complexity function. The
model selection algorithm we propose in the next subsection takes advantage of this
decomposition.

Definition 2.3. Let us choose some real constants ζ > 1, a ∈]0, 1] and ε > 0. We
assume that some randomized estimators (ρi,β)i∈I,β∈supp(ν) have been chosen and

that we have drawn θ̃i,β for every i ∈ I and β ∈ supp(ν). We define, for any i ∈ I,

C
(

i, β
)

= inf
γ∈[ζβ,+∞[

{

Da,β,γ(ρi,β , π
i)
(

θ̃i,β

)

+

(

β

γ − β
+

1

ζ − 1
+ 1

)

log
3

εµ(i)ν(β)ν(γ)

}

.

We have the following result.

Theorem 2.6. For any (i, i′, β, β′) ∈ I2 × supp(ν)2,

B
(

(i, β), (i′, β′)
)

≤ inf
λ>0

Φ−1
λ
N

{

r
(

θ̃i,β

)

− r
(

θ̃i′,β′

)

+
λ

2N
va, λ

N

(

θ̃i,β , θ̃i′,β′

)

+
C
(

θ̃i,β

)

+ C
(

θ̃i′,β′

)

+ ζ+1
ζ−1 log 3

εν(λ)

λ

}

.

Note, as a consequence of the concavity of Φ−1
λ
N

, that this implies
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Corollary 2.7.

B
(

(i, β), (i′, β′)
)

+B
(

(i′, β′), (i, β)
)

≤ 2 inf
λ>0

Φ−1
λ
N

{

λ

2N

va, λ
N

(

θ̃i,β , θ̃i′,β′

)

+ va, λ
N

(

θ̃i′,β′ , θ̃i,β

)

2

+
C (i, β) + C (i′, β′) + ζ+1

ζ−1 log 3
εν(λ)

λ

}

.

Corollary 2.7 shows that the symmetric part of B has an upper bound which
contains only variance and complexity terms.

3. Application: model selection

In this section, we propose a general algorithm to select among a family of
posteriors - and so to perform model selection as a particular case. This algorithm
was introduced by Catoni [8] in the case of classification. We first give the general
form of the estimator. We then give an empirical bound on its risk. The last
subsection is devoted to a theoretical bound under suitable hypothesis.

3.1. Selection algorithm. We introduce the following definition for the sake of
simplicity.

Definition 3.1. Let us put:

P =
{

t1, ..., tM
}

= {(i, β) ∈ I × supp(ν)} ,

where M = |I| × |supp(ν)| and the indexation of the ti’s is such that

C(t1) ≤ ... ≤ C(tM ).

Now, remark that there is no reason for the bound B defined in Theorem 2.5 to
be sub-additive. So let us define a sub-additive version of B.

Definition 3.2. We put, for any (t, t′) ∈ P2:

B̃(t, t′) = inf
h ≥ 1

(t0, ..., th) ∈ Ph+1

t0 = t, th = t′

h
∑

k=1

B(tk−1, tk).

Definition 3.3. For any k ∈ {1, ...,M} we put:

s(k) = inf
{

j ∈ {1, ...,M}, B̃(tk, tj) > 0
}

.

We are now ready to give the definition of our estimator.

Definition 3.4. We take as an estimator θ̃t̂ where t̂ = tk̂ and

k̂ = min (arg max s) .

3.2. Empirical bound on the risk of the selected estimator.

Theorem 3.1. Let us put ŝ = s(k̂). For any ε > 0, with P
⊗

t∈P
ρt-probability at

least 1 − ε,

R
(

θ̃t̂

)

≤ R
(

θ̃tj

)

+



















0, 1 ≤ j < ŝ,

B̃(ts(j), tj) ŝ ≤ j < k̂,

B̃(t̂, tŝ) + B̃(tŝ, tj), j ∈ (arg max s)

B̃(t̂, tj), otherwise.



PAC-BAYESIAN BOUNDS FOR RANDOMIZED EMPIRICAL RISK MINIMIZERS 13

Thus, adding only non negative terms to the bound,

R
(

θ̃t̂

)

≤ R
(

θ̃tj

)

+































0, 1 ≤ j < ŝ,

B(ts(j), tj) +B(tj , ts(j)) ŝ ≤ j < k̂,

B(tj , tŝ) +B(tŝ, tj)

+B(t̂, tŝ) +B(tŝ, t̂ ) j ∈ (arg max s),

B(tj , t̂ ) +B(t̂, tj), otherwise.

For a proof, we refer the reader to Catoni [8] where this Theorem is proved in the
case of classification, the proof can be reproduced here without any modification.

Theorem 3.1 shows that, according to Corollary 2.7 (page 12), R(θ̃t̂) − R(θ̃tj )
can be bounded by variance and complexity terms relative to posterior distributions
with a complexity not greater than C(tj), and an empirical loss in any case not much

larger than the one of θ̃tj .

3.3. Theoretical bound. In this subsection, we choose ρi,β as πi
exp(−βr) restricted

to a (random) neighborhood of θ̂i. More formally, for any p ≥ 0, let us put

Θi,p =

{

θ ∈ Θi, r(θ) − inf
Θi

r ≤ p

}

and for any q ∈]0, 1] let us put

pi,β(q) = inf
{

p > 0, πi
exp(−βr)(Θi,p) ≥ q

}

.

Then let us choose q once and for all and let us choose ρi,β so that

dρi,β

dπi
exp(−βr)

(θ) =
1Θi,pi,β(q)

(θ)

πi
exp(−βr)

(

Θi,pi,β(q)

) .

Moreover, we assume that 0 ≤ lθ(z) ≤ C for any θ ∈ Θ and z ∈ Z, and we fix
a = 1. In this case, note that for any λ ≤ N/(2C) we have:

v1, λ
N

(θ, θ′) ≤ P

[

(lθ − lθ′)
2
]

.

For the sake of simplicity we introduce the following definition.

Definition 3.5. Let us put, for any (θ, θ′) ∈ Θ2:

v(θ, θ′) = P

[

(lθ − lθ′)
2
]

and

V (θ, θ′) = P [v(θ, θ′)] .

To obtain the following result we take ν as the uniform measure on the grid

supp(ν) =
{

20, 21, ..., 2⌊
log N
log 2 ⌋

}

.

Theorem 3.2. Let us put, for any i ∈ I,

θi = arg min
θ∈Θi

R(θ)

and

θ = argmin
θ∈Θ

R(θ).

Let us assume that Mammen and Tsybakov’s margin assumption is satisfied, in

other words let there exist (κ, c) ∈ [1,+∞[×R
∗
+ such that

∀θ ∈ Θ,
[

V (θ, θ)
]κ

≤ c
[

R(θ) −R(θ)
]

.
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Let moreover every sub-model Θi, i ∈ I satisfy the following dimension assumption:

sup
ξ∈R

{

ξ
[

πi
exp(−ξR) (R) −R

(

θi

)

]}

≤ di

for a given sequence (di)i∈I ∈ (R+)I . Then there is a constant C = C(κ, c, C) such

that, with P
⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1 − 4ε,

R
(

θ̃t̂

)

≤ inf
i∈I

{

R
(

θi

)

+C max

{(

[

R
(

θi

)

−R
(

θ
)]

1
κ

(

di + log 1
q + log 1+log2 N

εµ(i)

)

N

)
1
2

,

(

di + log 1
q + log 1+log2 N

εµ(i)

N

)

κ
2κ−1

}}

.

For a proof, see subsection 5.4 page 16. Let us now make some remarks.

Remark 3.1 (Choice of the parameter q). The better choice for q is obviously q = 1.
In this case, our estimator is drawn randomly from the distribution,

ρi,β = πi
exp(−βr),

and the term log(1/q) vanishes.
However, practitioners worried about the idea to choose randomly in the whole

space an estimator can use a smaller value of q ensuring that, in any model i and
for any β,

r
(

θ̃i,β

)

≤ inf
Θi

r + pi,β(q),

so θ̃i,β is drawn in a neighborhood of the minimizer of the empirical risk.

Remark 3.2 (Margin assumption). The so-called margin assumption
[

V (θ, θ)
]κ

≤ c
[

R(θ) −R(θ)
]

was first introduced by Mammen and Tsybakov in the context of classification
[15, 20]. It has however been studied in the context of general regression by Lecue
in his PhD Thesis [14]. The terminology comes from classification, where a similar
assumption can be described in terms of margin. In the general case however, there
is no margin involved, but rather a distance V (θ, θ′)1/2 on the parameter space,
which serves to describe the shape of the function R in the neighborhood of its
minimum value R(θ).

Remark 3.3 (Dimension assumption). In many cases, the assumption

sup
ξ∈R

{

ξ
[

πi
exp(−ξR) (R) −R

(

θi

)

]}

≤ di

is just equivalent to the fact that every Θi has a finite dimension proportionnal to
di.

4. Conclusion

In this paper we studied a quite general regression problem. We proposed ran-
domized estimators, that can we drawn in small neighborhoods of empirical min-
imizers. We proved that these estimators reach the minimax rate of convergence
under Mammen and Tsybakov’s margin assumption.

We would like also to point out that the techniques used here can be applied in
a more general context. In particular, Catoni [8] studied the transductive classifi-
cation setting, where for a given k ∈ N, we observe the objects X1, · · · , X(k+1)N

and the labels Y1 ,· · · ,YN , and we want to predict the kN missing labels YN+1 ,· · ·
,Y(k+1)N . In this context, a deviation result equivalent to Lemma 1.2 (page 6) can
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be proved, and from this result we can obtain a theorem similar to Theorem 3.1
(page 12). We refer the reader to our PhD thesis [1] for more details (the trans-
ductive setting is introduced page 54 and the deviation result is Lemma 3.1 page
56).

5. Proofs

5.1. Proof of Lemma 1.1. For the sake of completeness, we reproduce here the
proof of Lemma 1.1 given in Catoni [6].

Proof of Lemma 1.1. Let us assume that h is upper-bounded on the support of n.
Let us remark that m is absolutely continuous with respect to n if and only if it is
absolutely continuous with respect to nexp(h). If it is the case, then

K
(

m,nexp(h)

)

= m

{

log

(

dm

dn

)

− h

}

+ logn(exp ◦h)

= K(m,n) −m(h) + logn(exp ◦h).

The left-hand side of this equation is nonnegative and cancels only for m = nexp(h).
Note that it remains valid when m is not absolutely continuous with respect to n
and just says in this case that +∞ = +∞. We therefore obtain

0 = inf
m∈M1

+(E)
[K(m,n) −m(h)] + logn(exp ◦h).

This proves the second part of lemma 1.1. For the first part, we do not assume any
longer that h is upper bounded on the support of n. We can write

logn(exp ◦h) = sup
B∈R

logn[exp ◦(h ∧B)] = sup
B∈R

sup
m∈M1

+(E)

[m (h ∧B) −K(m,n)]

= sup
m∈M1

+(E)

sup
B∈R

[m (h ∧B) −K(m,n)]

= sup
m∈M1

+(E)

{

sup
B∈R

[m (h ∧B)] −K(m,n)

}

= sup
m∈M1

+(E)

[m(h) −K(m,n)] .

�

5.2. Proof of Theorem 1.5.

Proof of Theorem 1.5. The beginning of this proof follows exactly the proof of The-
orem 1.3 (page 7) until Equation 1.2. Now, let us apply (to Equation 1.2) Lemma
1.1 with (E, E) = (Θ2, T ⊗2) to obtain:

P exp

{

sup
m∈M1

+(Θ2)

[

∫

Θ2

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

}

dm(θ, θ′) −K(m,π ⊗ π′)

]}

= 1.

Consequently

P exp

{

sup
(ρ,ρ′)∈[M1

+(Θ)]2

[

∫

Θ2

{

λΦ λ
N

[

Rλ
a

(θ, θ′)
]

−
λ

N

N
∑

i=1

Φ λ
N

[

(ℓθ − ℓθ′) (Zi) ∧
aN

λ

]

}

d(ρ⊗ρ′)(θ, θ′)−K(ρ, π)−K(ρ′, π′)

]}

= 1.

This ends the proof. �
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5.3. Proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. First, notice that:

K
(

ρ, πexp(−βR)

)

= β
[

ρ(R) − πexp(−βR)(R)
]

+ K (ρ, π) −K
(

πexp(−βR), π
)

.

Let us apply Theorem 1.5 with π = π′ = ρ′ = πexp(−βR) to obtain with probability

at least 1 − ε, for any ρ ∈ M1
+(Θ),

K
(

ρ, πexp(−βR)

)

≤ β

[

ρ(r) − πexp(−βR)(r)

+
γ

2N

∫

Θ2

va, γ
N

(θ, θ′)d
(

ρ⊗ πexp(−βR)

)

(θ, θ′) +
log 1

ε + K
(

ρ, πexp(−βR)

)

γ

+

∫

Θ2

∆λ
a
(θ, θ′)d

(

ρ⊗ πexp(−βR)

)

(θ, θ′)

]

+ K (ρ, π) −K
(

πexp(−βR), π
)

.

Replacing in the right-hand side of this inequality πexp(−βR) with a supremum over
all possible distributions leads to the announced result. �

Proof of Theorem 2.2. We have, for any θ:

log
dρ

dπexp(−βR)
(θ) = β

[

R(θ) − πexp(−βR)(R)
]

+ log
dρ

dπ
(θ) −K

(

πexp(−βR), π
)

.

Let us apply Theorem 1.3 with π = π′ = ρ′ = πexp(−βR) and a general ρ to obtain
with Pρ-probability at least 1 − ε over θ,

log
dρ

dπexp(−βR)
(θ) ≤ β

[

r(θ) − πexp(−βR)(r)

+
γ

2N

∫

Θ

va, γ
N

(θ, θ′)dπexp(−βR)(θ
′) +

log 1
ε + K

(

ρ, πexp(−βR)

)

γ

+

∫

Θ

∆λ
a
(θ, θ′)dπexp(−βR)(θ

′)

]

+ log
dρ

dπ
(θ) −K

(

πexp(−βR), π
)

.

The end of the proof is the same as in the case of Theorem 2.1. �

5.4. Proof of Theorem 3.2. We begin by a set of preliminary lemmas and defi-
nitions.

Definition 5.1. For the sake of simplicity, we will write:

r′(θ, θ′) = r(θ) − r(θ′)

and

R′(θ, θ′) = R(θ) −R(θ′)

for any (θ, θ′) ∈ Θ2.

Definition 5.2. We introduce the margin function:

ϕ : R∗
+ → R

x 7→ sup
θ∈Θ

[

V (θ, θ) − xR′(θ, θ)

]

.

Lemma 5.1 (Mammen and Tsybakov [15, 20]). Mammen’s and Tsybakov margin

assumtion:

∃(κ, c) ∈ [1,+∞[×R
∗
+, ∀θ ∈ Θ, V (θ, θ)κ ≤ cR′(θ, θ)
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implies:

∀x > 0, ϕ(x) ≤

(

1 −
1

κ

)

(κcx)−
1

κ−1

for κ > 1 and ϕ(c) ≤ 0 for κ = 1.

Definition 5.3. We define the modified Bernstein function:

g : R → R

x 7→







2[exp(x)−1−x]
x2 if x 6= 0,

1 if x = 0.

The function g is a variant of Bernstein’s function, used in Bernstein’s inequality
(see Bernstein [4]). Here, we prove a variant of this inequality.

Lemma 5.2 (Variant of Bernstein’s inequality). We have, for any λ > 0 and any

(θ, θ′) ∈ Θ2:

(5.1) P exp

[

λR′(θ, θ′) − λr′(θ, θ′) −
λ2

2N
g

(

2λC

N

)

V (θ, θ′)

]

≤ 1,

and the reverse inequality

(5.2) P exp

[

λr′(θ, θ′) − λR′(θ, θ′) −
λ2

2N
g

(

2λC

N

)

V (θ, θ′)

]

≤ 1.

We also have a similar inequality for variances:

(5.3) P exp

[

N

4C2
v(θ, θ′) −

N

2C2
V (θ, θ′)

]

≤ 1.

Proof. We have:

P exp [λR′(θ, θ′) − λr′(θ, θ′)]

= exp

{

N
∑

i=1

logP exp

[

−
λ

N
(lθ − lθ′) (Zi)

]

+ λR′(θ, θ′)

}

.

Now, note that for any b > 0, for any x ∈ [−b, b] we have:

exp(−x) = 1 − x+
x2

2
g(−x) ≤ 1 − x+

x2

2
g(b),

so that

logP exp

[

−
λ

N
(lθ − lθ′) (Zi)

]

≤ −λR′(θ, θ′) +
λ2

2N
g

(

2Cλ

N

)

V (θ, θ′).

It shows that

P exp [λR′(θ, θ′) − λr′(θ, θ′)] ≤ exp

[

λ2

2N
g

(

2Cλ

N

)

V (θ, θ′)

]

.

The proof of the reverse inequality follows the same scheme. For Inequality (5.3)
note that, using the same scheme, we obtain:

P exp

{

λv(θ, θ′) − λV (θ, θ′) −
λ2

2N
g

(

4λC2

N

)

P

[

(lθ − lθ′)
4
(Z)
]

}

≤ 1.

This implies that

P exp

[

λv(θ, θ′) − λV (θ, θ′) −
λ22C2

N
g

(

4λC2

N

)

V (θ, θ′)

]

≤ 1.

The choice λ = N/4C2 and the remark that g(1) ≤ 2 (actually g(1) ≃ 1.4) leads to
Inequality (5.3). �
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Definition 5.4. For the sake of shortness, we put:

δN (i, q, ε, κ) = max

{(

[

R
(

θi

)

−R
(

θ
)]

1
κ

(

di + log 1
q + log 1+log2 N

εµ(i)

)

N

)
1
2

,

(

di + log 1
q + log 1+log2 N

εµ(i)

N

)

κ
2κ−1

}

.

Now let us give a brief overview of what follows. Lemma 5.3 proves that for some
β, θ̃i,β achieves the expected rate of convergence in model Θi: δN (i, q, ε, κ). As we

then want to use Theorem 3.1 to compare our estimator θ̃t̂ to every possible θ̃i,β , we
will have to control the various parts of the empirical bound B(., .) by theoretical
terms. So we give two more lemmas: Lemma 5.4 controls the empirical variance
term v(., .) by the theoretical variance term V (., .) while Lemma 5.5 provides a
control for the empirical complexity term C(i, β). Given these three results we will
be able to prove Theorem 3.2. Let us start with

Lemma 5.3. Under the assumptions of Theorem 3.2, there is a constant C′ =
C′(κ, c, C) such that, with P

⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1 − ε, for any

i ∈ I, there is a β = β∗(i) ∈ supp(ν) such that

R′
(

θ̃i,β , θi

)

≤ C′δN (i, q, ε, κ).

Proof. We have, by Inequality (5.1) in Lemma 5.2:

1 ≥ πi
exp(−βR)P exp

[

λR′(., θi) − λr′(., θi) −
λ2

2N
g

(

2λC

N

)

V (., θi)

]

≥ Pρi,β exp

[

λR′(., θi) − λr′(., θi)

−
λ2

2N
g

(

2λC

N

)

V (., θi) − log
dρi,β

dπi
exp(−βR)

(.)

]

.

Thus

µ(i)ν(β) ≥ Pρi,β exp

[

λR′(., θi) − λr′(., θi)

−
λ2

2N
g

(

2λC

N

)

V (., θi) − log
dρi,β

dπi
exp(−βR)

(.) + log(µ(i)ν(β))

]

.

So, with P
⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1 − ε/2, for any i ∈ I and β ∈

supp(ν),

(5.4) λR′(θ̃i,β , θi) ≤ λr′(θ̃i,β , θi) +
λ2

2N
g

(

2λC

N

)

V (θ̃i,β , θi)

+ log
dρi,β

dπi
exp(−βR)

(θ̃i,β) + log
2

εµ(i)ν(β)
.

Note that, using Definition 5.2, for any x > 0,

V (θ̃i,β , θi) ≤ 2

[

V (θ̃i,β , θ) + V (θ, θi)

]

≤ 2

[

xR′(θ̃i,β , θ) + xR′(θi, θ) + 2ϕ(x)

]

.

Therefore Inequality (5.4) becomes:
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[

λ−
xλ2

N
g

(

2Cλ

N

)]

R′(θ̃i,β , θ) ≤

[

λ+
xλ2

N
g

(

2Cλ

N

)]

R′(θi, θ)

+ λr′(θ̃i,β , θi) +
2ϕ(x)λ2

N
g

(

2λC

N

)

+ β
[

R
(

θ̃i,β

)

− πi
exp(−βR)R

]

+ log
dρi,β

dπi
(θ̃i,β) −K

(

πi
exp(−βR), π

i
)

+ log
2

εµ(i)ν(β)
,

leading to
[

λ−
xλ2

N
g

(

2Cλ

N

)

− β

]

R′(θ̃i,β , θ) ≤

[

λ+
xλ2

N
g

(

2Cλ

N

)

− β

]

R′(θi, θ)

+
2ϕ(x)λ2

N
g

(

2λC

N

)

− βπi
exp(−βR)R

′(., θi) + log
dρi,β

dπi
exp(−βr)

(θ̃i,β)

− log πi exp
[

−λr′(., θi)
]

−K
(

πi
exp(−βR), π

i
)

+ log
2

εµ(i)ν(β)

and

(5.5)

[

λ−
xλ2

N
g

(

2Cλ

N

)

− β

]

R′(θ̃i,β , θi) ≤
2xλ2

N
g

(

2Cλ

N

)

R′(θi, θ)

+
2ϕ(x)λ2

N
g

(

2λC

N

)

− βπi
exp(−βR)R

′(., θi) + log
dρi,β

dπi
exp(−βr)

(θ̃i,β)

− log πi exp
[

−λr′(., θi)
]

−K
(

πi
exp(−βR), π

i
)

+ log
2

εµ(i)ν(β)
.

We can then use Inequality (5.2) (in Lemma 5.2, page 17) to obtain, with probability
at least 1 − ε/2, for any i ∈ I and β ∈ supp(ν),

(5.6) − log πi exp
[

−λr′(., θi)
]

≤ λπi
exp(−βR)r

′(., θi) + K
(

πi
exp(−βR), π

i
)

≤ λπi
exp(−βR)R

′(., θi) +
λ2

2N
g

(

2Cλ

N

)

πi
exp(−βR)V (., θi)

+ K
(

πi
exp(−βR), π

i
)

− log
εµ(i)ν(β)

2

≤

[

λ+
xλ2

N
g

(

2Cλ

N

)]

πi
exp(−βR)R

′(., θi) +
xλ2

N
g

(

2Cλ

N

)

R′(θi, θ)

+
2ϕ(x)λ2

N
g

(

2Cλ

N

)

+ K
(

πi
exp(−βR), π

i
)

+ log
2

εµ(i)ν(β)
.

Combining Inequalities (5.5) and (5.6) we have, with probability at least 1− ε, for
any i and β:

(5.7)

[

λ−
xλ2

N
g

(

2Cλ

N

)

− β

]

R′(θ̃i,β , θi) ≤
4xλ2

N
g

(

2Cλ

N

)

R′(θi, θ)

+
4ϕ(x)λ2

N
g

(

2λC

N

)

+

[

λ+
xλ2

N
g

(

2Cλ

N

)

− β

]

πi
exp(−βR)R

′(., θi)

+ log
dρi,β

dπi
exp(−βr)

(θ̃i,β) + 2 log
2

εµ(i)ν(β)
.

In order to make explicit the terms in Inequality 5.7, let us remind the definition
of ρi,β in Theorem 3.2 (page 13) and remark that

log
dρi,β

dπi
exp(−βr)

(θ̃i,β) ≤ log
1

q
.
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Let us also recall the dimension hypothesis in Theorem 3.2, implying that

πi
exp(−βR)R

′(., θi) ≤
di

β
.

Let us finally choose λ = 2β, Inequality 5.7 becomes:

(5.8)

[

β −
16xβ2

N
g

(

4Cβ

N

)]

R′(θ̃i,β , θi) ≤
16xβ2

N
g

(

4Cβ

N

)

R′(θi, θ)

+
16ϕ(x)β2

N
g

(

4βC

N

)

+

[

β +
4xβ2

N
g

(

4Cβ

N

)]

di

+ log
1

q
+ 2 log

2

εµ(i)ν(β)
.

Finally, Lemma 5.1 together with the margin assumption in Theorem 3.2 ensures
that

ϕ(x) ≤

(

1 −
1

κ

)

(κcx)
−1

κ−1

if κ > 1 and ϕ(c) ≤ 0 if κ = 1. Let us first deal with the case κ = 1. Inequality
(5.8) becomes, taking x = c,

(5.9) R′(θ̃i,β , θi) ≤

[

1

2
−

4cβ

N
g

(

4Cβ

N

)]−1
{

16cβ

N
g

(

4Cβ

N

)

R′(θi, θ)

+

[

1 +
4cβ

N
g

(

4Cβ

N

)]

di

β
+

1

β
log

1

q
+

2

β
log

2

εµ(i)ν(β)

}

.

In the right-hand side of Inequality 5.9, the numerator is optimal for β of the order
of

√

√

√

√

N
(

di + log 1
q + log 2

εµ(i)ν(β)

)

R′(θi, θ)

but in order to keep the denominator away from zero, the maximal order of mag-
nitude for β is N , so let us take β of the order of

min











√

√

√

√

N
(

di + log 1
q + log 2

εµ(i)ν(β)

)

R′(θi, θ)
, N











.

This choice leads to:

(5.10) R′(θ̃i,β , θi) ≤ C′′ max

{(

[

R
(

θi, θ
)]

(

di + log 1
q + log

1+log2 N
εµ(i)

)

N

)
1
2

,

(

di + log 1
q + log 1+log2 N

εµ(i)

N

)}

= C′′δN (i, q, ε, 1)

for some C′′ = C′′(c, C). In the case where κ > 1, Inequality (5.8) becomes:

(5.11) R′(θ̃i,β , θi) ≤

[

1

2
−

4xβ

N
g

(

4Cβ

N

)]−1
{

16xβ

N
g

(

4Cβ

N

)

R′(θi, θ)

+

(

1 −
1

κ

)

16β(κcx)−
1

κ−1

N
g

(

4βC

N

)

+

[

1 +
4xβ

N
g

(

4Cβ

N

)]

di

β

+
1

β
log

1

q
+

2

β
log

2

εµ(i)ν(β)

}

.
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Now, we choose x or the order of

min

{

[

R′
(

θi, θ
)]−

κ−1
κ ,

N

β

}

in Inequality (5.11) (the case x =
[

R′
(

θi, θ
)]−

κ−1
κ minimizes the numerator while

the fact that x = O(N/β) ensures that the denominator does not get too close to

zero). Now, let us consider both cases for x, and first x =
[

R′
(

θi, θ
)]−

κ−1
κ . In this

case, let us choose β of the order of

min















√

√

√

√

√

N
(

di + log 1
q + log 2

εµ(i)ν(β)

)

[

R′(θi, θ)
]

1
κ

, N















.

This leads to a bound of the order of

max

{(

[

R
(

θi, θ
)]

1
κ

(

di + log 1
q + log 1+log2 N

εµ(i)

)

N

)
1
2

,

di + log 1
q + log 1+log2 N

εµ(i)

N

}

≤ δN (i, q, ε, κ).

In the other case, x is of the order of N/β and

[

R′
(

θi, θ
)]−

κ−1
κ ≥

N

β
,

implying that

R′
(

θi, θ
)

≤

(

β

N

)
κ

κ−1

.

We have to choose β in order to optimize the numerator, in this case the optimal
order of magnitude is

[

(

di + log
1

q
+ log

1 + log2N

εµ(i)

)κ−1

N

]
1

2κ−1

and leads to a bound of the order of
(

di + log 1
q + log

1+log2 N
εµ(i)

N

)

κ
2κ−1

≤ δN (i, q, ε, κ).

So we have proved that, in the case κ > 1, for some C′′′ = C′′′(κ, c, C),

(5.12) R′(θ̃i,β , θi) ≤ C′′′δN (i, q, ε, κ).

We put:

C′(κ, c, C) =







C′′(c, C) if κ = 1

C′′′(κ, c, C) if κ > 1

and remark that Inequalities (5.10) and (5.12) end the proof. �

Lemma 5.4. Under the assumptions of Theorem 3.2, with P
⊗

i∈I,β∈supp(ν) ρi,β-

probability at least 1 − ε, for any (i, i′) ∈ I2, for any (β, γ, β′, γ′) ∈ supp(ν)4:

v
(

θ̃i,β , θ̃i′,β′

)

≤ 2V
(

θ̃i,β , θ̃i′,β′

)

+
4C2

N

[

D1,β,γ

(

ρi,β , π
i
)

(

θ̃i,β

)
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+ D1,β′,γ′

(

ρi′,β′ , πi′
)(

θ̃i′,β′

)

+

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

Proof. According to Inequality (5.3) (Lemma 5.2 page 17),

P exp

[

N

4C2
v(θ, θ′) −

N

4C2
V ′(θ, θ′)

]

≤ 1.

Let us integrate in (θ, θ′) with respect to the distribution πi
exp(−βR) ⊗ πi′

exp(−β′R)

and sum over all i, i′, β and β′ to obtain, with P
⊗

i∈I,β∈supp(ν) ρi,β-probability at

least 1 − ε/3, for any (i, i′) ∈ I2, for any (β, β′) ∈ supp(ν)2:

v
(

θ̃i,β , θ̃i′,β′

)

≤ 2V ′
(

θ̃i,β , θ̃i′,β′

)

+
4C2

N

{

log
dρi,β

dπi
exp(−βR)

(

θ̃i,β

)

+ log
dρi′,β′

dπi′

exp(−β′R)

(

θ̃i′,β′

)

+ log
3

ε

}

.

To conclude the proof, there remains to combine this result with Theorem 2.2 page
10, using a union bound argument. �

Lemma 5.5. Under the assumptions of Theorem 3.2, there is a constant K =
K(κ, c, C) such that, with P

⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1 − ε, for any

i ∈ I, there is γ ∈ supp(ν) such that, for β = β∗(i),

D1,β,γ(ρi,β , π
i)
(

θ̃i,β

)

≤ C(i, β) ≤ KδN (i, q, ε, κ)β.

Proof. We have

D1,β,γ(ρi,β , π
i)
(

θ̃i,β

)

=

(

1 −
β

γ

)−1
{

log
dρi,β

dπi
exp(−βr)

(

θ̃i,β

)

+ log πi
exp(−βr) exp

[

βγ

2N
v
(

., θ̃i,β

)

]

}

≤

(

1 −
β

γ

)−1
{

log
1

q
+ log πi exp

[

βγ

2N
v
(

., θ̃i,β

)

− βr′(., θ)

]

− log πi exp
[

−βr′(., θ)
]

}

.

Let us now apply Lemma 5.2 and the now usual integration technique to obtain
the following inequalities, with probability at least 1 − 4ε/5:

− log πi exp
[

−βr′(., θ)
]

= − sup
ρ∈M1

+(Θi)

[

−βρr′(., θ) −K(ρ, πi)
]

≤ − sup
ρ∈M1

+(Θi)

[

−βρR′(., θ) +
β2

2N
g

(

2βC

N

)

V (., θ) + log
5

ε
−K(ρ, πi)

]

≤ − logπi exp

(

−βR′(., θ) +
β2

2N
g

(

2βC

N

)

V (., θ)

)

+ log
5

ε
.

Moreover

log πi exp

[

βγ

2N
v
(

., θ̃i,β

)

− βr′(., θ)

]

≤ log πi exp

{

βγ

N
V (., θ̃i,β)βR′(., θ) +

β2

2N
g

(

2βC

N

)

V (., θ)

}

+
βγ4C2

N2
D1,β,γ(ρi,β , π

i)
(

θ̃i,β

)

+

[

1 +
4βγC2

N2
+

4γC2β2

N(γ − β)

]

log
5

ε
,
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so that
[

1 −
β

γ
−
βγ4C2

N2

]

D1,β,γ(ρi,β , π
i)
(

θ̃i,β

)

≤ log
1

q
+ log πi

exp(−βR) exp

{

[

βγ

N
+
β2

N
g

(

2βC

N

)]

V (., θ)

}

+

[

2 +
4βγC2

N2
+

4γC2β2

N(γ − β)

]

log
5

ε

≤ log
1

q
+ log πi

exp(−βR) exp

{

x

[

βγ

N
+
β2

N
g

(

2βC

N

)]

R′(., θi)

}

+

[

2βγ

N
+
β2

N
g

(

2βC

N

)]

[

xR′(θi, θ) + ϕ(x)
]

+ x
βγ

N
R′(θ̃i,β , θi)

+

[

2 +
4βγC2

N2
+

4γC2β2

N(γ − β)

]

log
5

ε
.

We then apply Lemma 5.3 to obtain with probability at least 1− ε/5

R′(θ̃i,β , θi) ≤ C′δN(i, q, ε/5, κ).

Moreover we can choose γ = 2β, and remember that the choice β = β∗(i) leads to
β < N , so

(5.13)

[

1

2
−
β28C2

N2

]

D1,β,2β(ρi,β , π
i)
(

θ̃i,β

)

≤ log
1

q
+ log πi

exp(−βR) exp

{

xβ2

N
[2 + g (2C)]R′(., θi)

}

+
β2

N
[2 + g (2C)]

[

xR′(θi, θ) + ϕ(x)
]

+
2xβ2

N
C′δN (i, q, ε/5, κ)

+

[

2 +
12β2C2

N2

]

log
5

ε
.

Now, let us compute:

log πi
exp(−βR) exp

{

xβ2

N
[2 + g (2C)]R′(., θi)

}

≤
β2

N
[2 + g(2C)]

∫ x

0

πi
exp{−β[1− δβ

N
(2+g(2C))]}R

′(., θi)dδ

≤
β2

N [2 + g(2C)]

β
{

1 − xβ
N [2 + g(2C)]

}xπi
exp{−β[1− xβ

N
(2+g(2C))]}R

′(., θi)

≤
xdiβ

N

2 + g(2C)

1 − xβ
N [2 + g(2C)]

by the dimension assumption, and so for any x smaller than N/β, Inequality 5.13
becomes

(5.14)

[

1

2
−
β28C2

N2

]

D1,β,2β(ρi,β , π
i)
(

θ̃i,β

)

≤ 2βC′δN(i, q, ε/5, κ) + β

{

1

β
log

1

q
+
di

β

2 + g(2C)

1 − xβ
N [2 + g(2C)]
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+
β

N
[2 + g (2C)]

[

xR′(θi, θ) + ϕ(x)
]

+
2 + 12g(2C)

β
log

5

ε

}

.

The optimization of the right-hand side of Inequality (5.14) with respect to x and
β leads to the same discussion as for the optimization of the right-hand side of
Inequality (5.8) (page 20) in the proof of Lemma 5.3 (and a choice of x satisfying
x < N/β). �

We are now able to proceed to the

proof of Theorem 3.2. With P
⊗

i∈I,β∈supp(ν) ρi,β-probability at least 1−4ε the in-

equalities stated in Theorem 3.1 and in Lemmas 5.3, 5.4 and 5.5 are simultaneously
satisfied. In this case, let us choose i ∈ I, β = β∗(i) and j such that tj = (i, β).
We have:

R′
(

θ̃t̂, θ̃(i,β)

)

≤































0, 1 ≤ j < ŝ (case 1),

B(ts(j), tj) +B(tj , ts(j)) ŝ ≤ j < k̂ (case 2),

B(tj , tŝ) +B(tŝ, tj)

+B(t̂, tŝ) +B(tŝ, t̂) j ∈ (arg max s) (case 3),

B(tj , t̂) +B(t̂, tj), otherwise (case 4).

Let us examine successively the four cases (1, 2, 4 and 3, this last case being the
most difficult).

Case 1: if 1 ≤ j < ŝ, then

R′
(

θ̃t̂, θ̃(i,β)

)

≤ 0,

and so, by the result of Lemma 5.3 (page 18),

R′
(

θ̃t̂, θi

)

≤ C′δN (i, q, ε, κ).

Case 2: the idea in all the remaining cases (2, 4 and 3) is that we have to

give a control of R′
(

θ̃t̂, θ̃(i,β)

)

, controlled by the empirical bound B(., .), in terms

of theoretical quantities only. In case 2, ŝ ≤ j < k̂, then for any λ ∈ supp(ν),

R′
(

θ̃ts(j) , θ̃(i,β)

)

≤ B(ts(j), tj) +B(tj , ts(j))

≤
λ

2N
v(ts(j), tj) +

C(ts(j)) + C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

≤
λ

N
V (ts(j), tj) +

C(tj) + C(ts(j)) + ζ+1
ζ−1 log 3

εν(λ)

λ

+
4C2λ

N2

[

C(tj) + C(ts(j)) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

As we have, by definition of the function s(.), the inequality C(ts(j)) ≤ C(tj),

R′
(

θ̃ts(j) , θ̃(i,β)

)

≤
λ

N
V (ts(j), tj) +

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′

)

log
3

εµ(i)µ(i′)

]

,

and so

(5.15) R′
(

θ̃ts(j) , θ̃tj

)

≤
2λ

N

[

xR′
(

θ̃ts(j) , θ
)

+ xR′
(

θ̃tj , θ
)

+ ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ
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+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′

)

log
3

εµ(i)µ(i′)

]

.

Thus
[

1 −
2λx

N

]

R′
(

θ̃ts(j) , θ̃tj

)

≤
2λ

N

[

2xR′(θ̃tj , θi) + 2xR′(θi, θ) + ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′

)

log
3

εµ(i)µ(i′)

]

.

Let us apply Lemma 5.5 page 22 to upper bound C(tj), Lemma 5.3 page 18 to

upper bound R′(θ̃tj , θi) and Lemma 5.1 page 16 to upper bound ϕ(x). Let us put
moreover λ = γ = γ′ = 2β = 2β′ and remember that β < N . We obtain, for any x
such that x < N/β,
[

1 −
4βx

N

]

R′
(

θ̃ts(j) , θ̃tj

)

≤
4β

N

[

2xR′
(

θi, θ
)

+

(

1 −
1

κ

)

(κcx)
−1

κ−1

]

+ [K(1 + 32C2) + 8C′]δN (i, q, ε, κ) +
1

2β
+
ζ + 1

ζ − 1
log

3

εν(λ)
2β

+
48C2

N
log

3

εµ(i)µ(i′)
.

Let us replace x and β by the values given in the discussion for the optimization of
the right-hand side of Inequality (5.8) (page 20) in the proof of Lemma 5.3 (and a
choice of x satisfying x < N/β) to obtain the existence of a constantD′ = D′(κ, c, C)
such that

R′
(

θ̃ts(j) , θ̃tj

)

≤ D′δN (i, q, ε, κ).

We then deduce from this result and from Lemma 5.3 that

R′
(

θ̃t̂, θi

)

≤ R′
(

θ̃t̂, θ̃tj

)

+R′
(

θ̃tj , θi

)

≤ (D′ + C′) δN (i, q, ε, κ).

Case 4: the proof follows roughly the same scheme than for case 2; if j >
max(arg max s), note that C(tj) ≥ C(t̂ ), therefore

R′
(

θ̃t̂, θ̃(i,β)

)

≤ B(t̂, tj) +B(tj , t̂)

≤
λ

2N
v(t̂, tj) +

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

≤
λ

N
V (t̂, tj) +

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

≤
2λ

N

[

xR′(θ̃t̂, θ) + xR′(θ̃tj , θ) + ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

Thus
[

1 −
2λx

N

]

R′
(

θ̃t̂, θ̃(i,β)

)

≤
4λx

N

[

R′
(

θ̃(i,β), θi

)

+R′
(

θi, θ
)

]
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+
2λϕ(x)

N
+

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

Let us apply Lemma 5.5 page 22 to upper bound C(tj), Lemma 5.3 page 18 to

upper bound R′(θ̃tj , θi) and Lemma 5.1 page 16 to upper bound ϕ(x). Let us put
moreover λ = γ = γ′ = 2β = 2β′ and remember that β < N . We obtain, for any x
such that x < N/β,
[

1 −
4βx

N

]

R′
(

θ̃ts(j) , θ̃(i,β)

)

≤
4β

N

[

2xR′
(

θi, θ
)

+

(

1 −
1

κ

)

(κcx)
−1

κ−1

]

+ [K(1 + 32C2) + 8C′]δN (i, q, ε, κ) +
1

2β
+
ζ + 1

ζ − 1
log

3

εν(λ)
2β

+
48C2

N
log

3

εµ(i)µ(i′)
.

Choosing x exactly in the same way as in the previous cases and replacing β = β∗(i)
with its value, we obtain the existence of D′′ = D′′(κ, c, C) such that

R′
(

θ̃t̂, θ̃(i,β)

)

≤ D′′δN (i, q, ε, κ)

and so

R
(

θ̃t̂, θi

)

≤ (C′ + D′′) δN (i, q, ε, κ).

Case 3: if j ∈ (arg max s), remember that ŝ = s(t̂) = s(j), so that

(5.16) R′
(

θ̃t̂, θ̃tj

)

≤
[

B(tj , ts(j)) +B(ts(j), tj)
]

+
[

B(t̂, tŝ) +B(tŝ, t̂)
]

.

We are going to upper bound separately B(tj , ts(j)) + B(ts(j), tj) and B(t̂, tŝ) +
B(tŝ, t̂). Let us first deal with the term B(tj , ts(j)) +B(ts(j), tj):

(5.17)
[

B(tj , ts(j)) +B(ts(j), tj)
]

≤
λ

2N
v(ts(j), tj) +

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

≤
λ

N
V (ts(j), tj) +

2C(tj) + ζ+1
ζ−1 log 3

εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

≤
2λ

N

[

xR′(θ̃ts(j) , θ̃tj ) + 2xR′(θ̃tj , θi) + 2xR′(θi, θ) + ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

Let us notice that

R′(θ̃ts(j) , θ̃tj ) ≤ B(ts(j), tj)

and remember that, by definition, B(tj , ts(j)) ≥ 0. This shows that

R′(θ̃ts(j) , θ̃tj ) ≤
[

B(tj , ts(j)) +B(ts(j), tj)
]

.

Once again, let us apply Lemma 5.5 to upper bound C(tj), Lemma 5.3 to upper

bound R′(θ̃tj , θi) and Lemma 5.1 to upper bound ϕ(x). Let us put moreover λ =
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γ = γ′ = 2β = 2β′. Inequality 5.17 becomes:
(

1 −
4βx

N

)

[

B(tj , ts(j)) +B(ts(j), tj)
]

≤
4β

N

[

2xR′(θi, θ) +

(

1 −
1

κ

)

(κcx)
−1

κ−1

]

+ [K(1 + 32C2) + 8C′]δN (i, q, ε, κ) +
1

2β
+
ζ + 1

ζ − 1
log

3

εν(λ)
2β

+
48C2

N
log

3

εµ(i)µ(i′)

and therefore
[

B(tj , ts(j)) +B(ts(j), tj)
]

≤ EδN (i, q, ε, κ).

There remains to upper bound
[

B(t̂, tŝ) + B(tŝ, t̂)
]

. We will use to that purpose

the fact that C(t̂) ≤ C(tj):
[

B(t̂, tŝ) +B(tŝ, t̂)
]

≤
2λ

N

[

xR′(θ̃t̂, θ̃tj ) + xR′(θ̃ts(j) , θ̃tj ) + 2xR′(θ̃tj , θi) + 2xR′(θi, θ) + ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

Note that we have already proved that

R′(θ̃ts(j) , θ̃tj ) ≤
[

B(tj , ts(j)) +B(ts(j), tj)
]

≤ EδN (i, q, ε, κ).

Plugging all these results into Inequality (5.16), we obtain,
(

1 −
2λx

N

)

R′
(

θ̃t̂, θ̃tj

)

≤ EδN (i, q, ε, κ)

+
2λ

N

[

xEδN (i, q, ε, κ) + 2xR′(θ̃tj , θi) + 2xR′(θi, θ) + ϕ(x)
]

+
2C(tj) + ζ+1

ζ−1 log 3
εν(λ)

λ

+
4C2λ

N2

[

2C(tj) +

(

1 +
β

γ − β
+

β′

γ′ − β′
log

3

εµ(i)µ(i′)

)

]

.

As usual, let us apply Lemma 5.5 to upper bound C(tj), Lemma 5.3 to upper bound

R′(θ̃tj , θi) and Lemma 5.1 to upper bound ϕ(x). Let us put λ = γ = γ′ = 2β = 2β′,
to obtain
(

1 −
4βx

N

)

R′
(

θ̃t̂, θ̃tj

)

≤
4β

N

[

2xR′(θi, θ) +

(

1 −
1

κ

)

(κcx)
−1

κ−1

]

+ [K(1 + 32C2) + 8C′ + 3E ]δN (i, q, ε, κ) +
1

2β
+
ζ + 1

ζ − 1
log

3

εν(λ)
2β

+
48C2

N
log

3

εµ(i)µ(i′)
,

and therefore

R′
(

θ̃t̂, θ̃tj

)

≤ E ′δN (i, q, ε, κ).

This ends the proof. �
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Appendix : bounding the effect of truncation

We will show here how to upper bound R(θ)−R(θ′)−Rλ(θ, θ′) by some quantity
∆λ(θ, θ′) depending on an additional hypothesis on the data distribution.

Lemma 5.6. Let us assume that we are in the i.i.d. case, where P1 = ... = PN

and that for some constants (b, B) ∈ R
2
+

∀θ ∈ Θ, P1 {exp [b |lθ(Z1)|]} ≤ B.

Then, for any (θ, θ′) ∈ Θ2,

R(θ) −R(θ′) −Rλ(θ, θ′) ≤ ∆λ(θ, θ′) =
2B

b
exp

(

−bN

2λ

)

.

Proof. From definitions,

R(θ) −R(θ′) −Rλ(θ, θ′)

= P1

{

lθ(Z1) − lθ′(Z1) − [lθ(Z1) − lθ′(Z1)] ∧
N

λ

}

= P1

[

(

lθ(Z1) − lθ′(Z1) −
N

λ

)

+

]

,

where (x)+ = x ∧ 0. So we can write

R(θ) −R(θ′) −Rλ(θ, θ′)

≤

∫ +∞

0

P1

[

(

lθ(Z1) − lθ′(Z1) −
N

λ

)

+

> t

]

dt

≤

∫ +∞

0

P1

[

lθ(Z1) − lθ′(Z1) −
N

λ
> t

]

dt

≤

∫ +∞

0

P1

{

exp

[

b

2

(

lθ(Z1) − lθ′(Z1) −
N

λ
− t

)]}

dt

≤ exp

(

−bN

2λ

)

B

∫ +∞

0

exp

(

−
bt

2

)

dt,

leading to the result stated in the lemma. �
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