460 research outputs found
New planetary and EB candidates from Campaigns 1-6 of the K2 mission
With only two functional reaction wheels, Kepler cannot maintain stable
pointing at its original target field and entered a new mode of observation
called K2. Our method is based on many years of experience in planet hunting
for the CoRoT mission. Due to the unstable pointing, K2 light curves present
systematics that are correlated with the target position in the CCD. Therefore,
our pipeline also includes a decorrelation of this systematic noise. Our
pipeline is optimised for bright stars for which spectroscopic follow-up is
possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated
light curves are searched for transits with an adapted version of the CoRoT
alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary
candidates from campaigns 1, 2, 3, 4, 5 and 6 of K2. Both the planetary
candidates and eclipsing binary candidates lists are made public to promote
follow-up studies. The light curves will also be available to the community.Comment: 22 pages. 5 figures, 4 tables, Accepted for publication in A&
ARCHI: pipeline for light curve extraction of CHEOPS background star
High precision time series photometry from space is being used for a number
of scientific cases. In this context, the recently launched CHEOPS (ESA)
mission promises to bring 20 ppm precision over an exposure time of 6 hours,
when targeting nearby bright stars, having in mind the detailed
characterization of exoplanetary systems through transit measurements. However,
the official CHEOPS (ESA) mission pipeline only provides photometry for the
main target (the central star in the field). In order to explore the potential
of CHEOPS photometry for all stars in the field, in this paper we present
archi, an additional open-source pipeline module{\dag}to analyse the background
stars present in the image. As archi uses the official Data Reduction Pipeline
data as input, it is not meant to be used as independent tool to process raw
CHEOPS data but, instead, to be used as an add-on to the official pipeline. We
test archi using CHEOPS simulated images, and show that photometry of
background stars in CHEOPS images is only slightly degraded (by a factor of 2
to 3) with respect to the main target. This opens a potential for the use of
CHEOPS to produce photometric time series of several close-by targets at once,
as well as to use different stars in the image to calibrate systematic errors.
We also show one clear scientific application where the study of the companion
light curve can be important for the understanding of the contamination on the
main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code
available at https://github.com/Kamuish/arch
Distinguishing the albedo of exoplanets from stellar activity
Light curves show the flux variation from the target star and its orbiting
planets as a function of time. In addition to the transit features created by
the planets, the flux also includes the reflected light component of each
planet, which depends on the planetary albedo. This signal is typically
referred to as phase curve and could be easily identified if there were no
additional noise. As well as instrumental noise, stellar activity, such as
spots, can create a modulation in the data, which may be very difficult to
distinguish from the planetary signal. We analyze the limitations imposed by
the stellar activity on the detection of the planetary albedo, considering the
limitations imposed by the predicted level of instrumental noise and the short
duration of the observations planned in the context of the CHEOPS mission. As
initial condition, we have assumed that each star is characterized by just one
orbiting planet. We built mock light curves that included a realistic stellar
activity pattern, the reflected light component of the planet and an
instrumental noise level, which we have chosen to be at the same level as
predicted for CHEOPS. We then fit these light curves to try to recover the
reflected light component, assuming the activity patterns can be modeled with a
Gaussian process.We estimate that at least one full stellar rotation is
necessary to obtain a reliable detection of the planetary albedo. This result
is independent of the level of noise, but it depends on the limitation of the
Gaussian process to describe the stellar activity when the light curve
time-span is shorter than the stellar rotation. Finally, in presence of typical
CHEOPS gaps in the simulations, we confirm that it is still possible to obtain
a reliable albedo.Comment: Accepted for publication in A&A, 14 pages, 12 figure
Constraining planet structure and composition from stellar chemistry: trends in different stellar populations
The chemical composition of stars that have orbiting planets provides
important clues about the frequency, architecture, and composition of exoplanet
systems. We explore the possibility that stars from different galactic
populations that have different intrinsic abundance ratios may produce planets
with a different overall composition. We compiled abundances for Fe, O, C, Mg,
and Si in a large sample of solar neighbourhood stars that belong to different
galactic populations. We then used a simple stoichiometric model to predict the
expected iron-to-silicate mass fraction and water mass fraction of the planet
building blocks, as well as the summed mass percentage of all heavy elements in
the disc. Assuming that overall the chemical composition of the planet building
blocks will be reflected in the composition of the formed planets, we show that
according to our model, discs around stars from different galactic populations,
as well as around stars from different regions in the Galaxy, are expected to
form rocky planets with significantly different iron-to-silicate mass
fractions. The available water mass fraction also changes significantly from
one galactic population to another. The results may be used to set constraints
for models of planet formation and chemical composition. Furthermore, the
results may have impact on our understanding of the frequency of planets in the
Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
Measuring the orbit shrinkage rate of hot Jupiters due to tides
A tidal interaction between a star and a close-in exoplanet leads to
shrinkage of the planetary orbit and eventual tidal disruption of the planet.
Measuring the shrinkage of the orbits will allow for the tidal quality
parameter of the star () to be measured, which is an important
parameter to obtain information about stellar interiors. We analyse data from
TESS for two targets known to host close-in hot Jupiters, WASP-18 and WASP-19,
to measure the current limits on orbital period variation and provide new
constrains on . We modelled the transit shape using all the available
TESS observations and fitted the individual transit times of each transit. We
used previously published transit times together with our results to fit two
models, a constant period model, and a quadratic orbital decay model, MCMC
algorithms. We find period change rates of for
WASP-18b and for WASP-19b and we do not find
significant evidence of orbital decay in these targets. We obtain new lower
limits for of in WASP-18 and
in WASP-19, corresponding to upper limits of the
orbital decay rate of and ,
respectively, with a 95% confidence level. We compare our results with other
relevant targets for tidal decay studies. We find that the orbital decay rate
in both WASP-18b and WASP-19b appears to be smaller than the measured orbital
decay of WASP-12b. We show that the minimum value of in WASP-18 is
two orders of magnitude higher than that of WASP-12, while WASP-19 has a
minimum value one order of magnitude higher, which is consistent with other
similar targets. Further observations are required to constrain the orbital
decay of WASP-18 and WASP-19.Comment: 10 pages plus 5-page appendix. To be published in Astronomy and
Astrophysic
Explicit connection actions in multiparty session types
This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections
Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements
One of the best ways to improve our understanding of the stellar
activity-induced signal in radial velocity (RV) measurements is through
simultaneous high-precision photometric and RV observations. This is of prime
importance to mitigate the RV signal induced by stellar activity and therefore
unveil the presence of low-mass exoplanets. The K2 Campaign 7 and 8
field-of-views were located in the southern hemisphere, and provided a unique
opportunity to gather unprecedented simultaneous high precision photometric
observation with K2 and high-precision RV measurements with the HARPS
spectrograph to study the relationship between photometric variability and RV
jitter. We observed nine stars with different levels of activity; from quiet to
very active. We probe the presence of any meaningful relation between measured
RV jitter and the simultaneous photometric variation, and also other activity
indicators (e.g. BIS, FWHM, , and F8), by evaluating the strength
and significance of the correlation between RVs and each indicator. We found
that for the case of very active stars, strong and significant correlations
exist between almost all the observables and measured RVs; however, for lower
activity levels the correlations become random. Except for the F8 which its
strong correlation with RV jitter persists over a wide range of stellar
activity level, and thus our result suggests that F8 might be a powerful proxy
for activity induced RV jitter. Moreover, we examine the capability of two
state-of-the-art modeling techniques, namely the FF' method and SOAP2.0, in
accurately predicting the RV jitter amplitude using the simultaneous
photometric observation. We found that for the very active stars both
techniques can reasonably well predict the amplitude of the RV jitter, however,
at lower activity levels the FF' method underpredicts the RV jitter amplitude.Comment: 13 pages, 7 figures, 2 tables, accepted for publication in A&
SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period
While giant extrasolar planets have been studied for more than two decades
now, there are still some open questions such as their dominant formation and
migration process, as well as their atmospheric evolution in different stellar
environments. In this paper, we study a sample of giant transiting exoplanets
detected by the Kepler telescope with orbital periods up to 400 days. We first
defined a sample of 129 giant-planet candidates that we followed up with the
SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This
allow us to unveil the nature of these candidates and to measure a
false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting
within 400 days of period. Based on a sample of confirmed or likely planets, we
then derive the occurrence rates of giant planets in different ranges of
orbital periods. The overall occurrence rate of giant planets within 400 days
is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the
different populations of giant planets reported by radial velocity surveys.
Comparing these rates with other yields, we find that the occurrence rate of
giant planets is lower only for hot jupiters but not for the longer period
planets. We also derive a first measurement on the occurrence rate of brown
dwarfs in the brown-dwarf desert with a value of 0.29 +/- 0.17 %. Finally, we
discuss the physical properties of the giant planets in our sample. We confirm
that giant planets receiving a moderate irradiation are not inflated but we
find that they are in average smaller than predicted by formation and evolution
models. In this regime of low-irradiated giant planets, we find a possible
correlation between their bulk density and the Iron abundance of the host star,
which needs more detections to be confirmed.Comment: To appear in Astronomy and Astrophysic
Hybrid Session Verification through Endpoint API Generation
© Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP
Gaussian Process modelling of granulation and oscillations in red-giant stars
The analysis of photometric time series in the context of transiting planet
surveys suffers from the presence of stellar signals, often dubbed "stellar
noise". These signals, caused by stellar oscillations and granulation, can
usually be disregarded for main-sequence stars, as the stellar contributions
average out when phase-folding the light curve. For evolved stars, however, the
amplitudes of such signals are larger and the timescales similar to the transit
duration of short-period planets, requiring that they be modeled alongside the
transit. With the promise of TESS delivering on the order of light
curves for stars along the red-giant branch, there is a need for a method
capable of describing the "stellar noise" while simultaneously modelling an
exoplanet's transit. In this work, a Gaussian Process regression framework is
used to model stellar light curves and the method validated by applying it to
TESS-like artificial data. Furthermore, the method is used to characterize the
stellar oscillations and granulation of a sample of well-studied
\textit{Kepler} low-luminosity red-giant branch stars. The parameters
determined are compared to equivalent ones obtained by modelling the power
spectrum of the light curve. Results show that the method presented is capable
of describing the stellar signals in the time domain and can also return an
accurate and precise measurement of , i.e., the frequency of
maximum oscillation amplitude. Preliminary results show that using the method
in transit modelling improves the precision and accuracy of the ratio between
the planetary and stellar radius, . The method's implementation is
publicly available.Comment: Accepted for publication in MNRAS; 12 pages, 10 figures, 2 table
- …