83 research outputs found

    Heterogeneous strain distribution in the subchondral bone of human osteoarthritic femoral heads, measured with digital volume correlation

    Get PDF
    Osteoarthritis (OA) is a chronic disease, affecting approximately one third of people over the age of 45. Whilst the etiology and pathogenesis of the disease are still not well understood, mechanics play an important role in both the initiation and progression of osteoarthritis. In this study, we demonstrate the application of stepwise compression, combined with microCT imaging and digital volume correlation (DVC) to measure and evaluate full-field strain distributions within osteoarthritic femoral heads under uniaxial compression. A comprehensive analysis showed that the microstructural features inherent in OA bone did not affect the level of uncertainties associated with the applied methods. The results illustrate the localization of strains at the loading surface as well as in areas of low bone volume fraction and subchondral cysts. Trabecular thickness and connectivity density were identified as the only microstructural parameters with any association to the magnitude of local strain measured at apparent yield strain or the volume of bone exceeding yield strain. This work demonstrates a novel approach to evaluating the mechanical properties of the whole human femoral head in case of severe OA

    Analysis of Bone Architecture in Rodents Using Micro-Computed Tomography.

    Get PDF
    This chapter describes the use of micro-computed tomography scanning for analyzing bone structure, focussing on rodent bone. It discusses sample preparation, the correct setup of the scanner, the impact of some of the important scanner settings and new applications

    MicroFE models of porcine vertebrae with induced bone focal lesions : validation of predicted displacements with digital volume correlation

    Get PDF
    The evaluation of the local mechanical behavior as a result of metastatic lesions is fundamental for the characterization of the mechanical competence of metastatic vertebrae. Micro finite element (microFE) models have the potential of addressing this challenge through laboratory studies but their predictions of local deformation due to the complexity of the bone structure compromized by the lesion must be validated against experiments. In this study, the displacements predicted by homogeneous, linear and isotropic microFE models of vertebrae were validated against experimental Digital Volume Correlation (DVC) measurements. Porcine spine segments, with and without mechanically induced focal lesions, were tested in compression within a micro computed tomography (microCT) scanner. The displacement within the bone were measured with an optimized global DVC approach (BoneDVC). MicroFE models of the intact and lesioned vertebrae, including or excluding the growth plates, were developed from the microCT images. The microFE and DVC boundary conditions were matched. The displacements measured by the DVC and predicted by the microFE along each Cartesian direction were compared. The results showed an excellent agreement between the measured and predicted displacements, both for intact and metastatic vertebrae, in the middle of the vertebra, in those cases where the structure was not loaded beyond yield (0.69 < R2 < 1.00). Models with growth plates showed the worst correlations (0.02 < R2 < 0.99), while a clear improvement was observed if the growth plates were excluded (0.56 < R2 < 1.00). In conclusion, these simplified models can predict complex displacement fields in the elastic regime with high reliability, more complex non-linear models should be implemented to predict regions with high deformation, when the bone is loaded beyond yield

    PTH(1–34) treatment and/or mechanical loading have different osteogenic effects on the trabecular and cortical bone in the ovariectomized C57BL/6 mouse

    Get PDF
    In preclinical mouse models, a synergistic anabolic response to PTH(1–34) and tibia loading was shown. Whether combined treatment improves bone properties with oestrogen deficiency, a cardinal feature of osteoporosis, remains unknown. This study quantified the individual and combined longitudinal effects of PTH(1–34) and loading on the bone morphometric and densitometric properties in ovariectomised mice. C57BL/6 mice were ovariectomised at 14-weeks-old and treated either with injections of PTH(1–34); compressive loading of the right tibia; both interventions concurrently; or both interventions on alternating weeks. Right tibiae were microCT-scanned from 14 until 24-weeks-old. Trabecular metaphyseal and cortical midshaft morphometric properties, and bone mineral content (BMC) in 40 different regions of the tibia were measured. Mice treated only with loading showed the highest trabecular bone volume fraction at week 22. Cortical thickness was higher with co-treatment than in the mice treated with PTH alone. In the mid-diaphysis, increases in BMC were significantly higher with loading than PTH. In ovariectomised mice, the osteogenic benefits of co-treatment on the trabecular bone were lower than loading alone. However, combined interventions had increased, albeit regionally-dependent, benefits to cortical bone. Increased benefits were largest in the mid-diaphysis and postero-laterally, regions subjected to higher strains under compressive loads

    Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis

    Get PDF
    BACKGROUND: The extracranial venous outflow routes in clinically defined multiple sclerosis (CDMS) have never been investigated. METHODS: Sixty-five patients affected by CDMS, and 235 controls composed, respectively, of healthy subjects, healthy subjects older than CDMS patients, patients affected by other neurological diseases, and older controls not affected by neurological diseases but scheduled for venography (HAV-C), blindly underwent a combined transcranial and extracranial Color-Doppler high-resolution examination (TCCS-ECD) aimed at detecting at least two of five parameters of anomalous venous outflow. According to the TCCS-ECD screening, patients and HAV-C further underwent selective venography of the azygous and jugular venous system with venous pressure measurement. RESULTS: CDMS and TCCS-ECD venous outflow anomalies were dramatically associated (OR 43, 95% CI 29-65, p<0.0001). Subsequently, venography demonstrated in CDMS, and not in controls, the presence of multiple severe extracranial stenosis, affecting the principal cerebrospinal venous segments; it configures a picture of chronic cerebrospinal venous insufficiency (CCSVI) with four different patterns of distribution of stenosis and substitute circle. Moreover, relapsing-remitting and secondary progressive courses were associated to CCSVI patterns significantly different from those of primary progressive (p<0.0001). Finally, the pressure gradient measured across the venous stenosies was slightly but significantly higher. CONCLUSION: CDMS is strongly associated with CCSVI, a picture never been described so far, characterized by abnormal venous haemodynamics determined by extracranial multiple venous strictures of unknown origin. The location of venous obstructions plays a key role in determining the clinical course of the disease

    Surfactant replacement might help recovery of low-compliance lung in severe COVID-19 pneumonia.

    Get PDF
    It has been hypothesized that there is a reduced AT2 cells number with low ability to synthesize and secrete endogenous surfactant in COVID-19 patients. To our knowledge, exogenous surfactant replacement has not been described so far in COVID-19 patients. We here report five cases of critically ill COVID-19 undergoing exogenous surfactant instillation through the airways

    Validation of Finite Element models of the Mouse Tibia using Digital Volume Correlation

    Get PDF
    The mouse tibia is a common site to investigate bone adaptation. Micro-Finite Element (microFE) models based on micro-Computed Tomography (microCT) images can estimate bone mechanical properties non-invasively but their outputs need to be validated with experiments. Digital Volume Correlation (DVC) can provide experimental measurements of displacements over the whole bone volume. In this study we applied DVC to validate the local predictions of microFE models of the mouse tibia in compression. Six mouse tibiae were stepwise compressed within a microCT system. MicroCT images were acquired in four configurations with applied compression of 0.5 N (preload), 6.5 N, 13.0 N and 19.5 N. Failure load was measured after the last scan. A global DVC algorithm was applied to the microCT images in order to obtain the displacement field over the bone volume. Homogeneous, isotropic linear hexahedral microFE models were generated from the images collected in the preload configuration with boundary conditions interpolated from the DVC displacements at the extremities of the tibia. Experimental displacements from DVC and numerical predictions were compared at corresponding locations in the middle of the bone. Stiffness and strength were also estimated from each model and compared with the experimental measurements. The magnitude of the displacement vectors predicted by microFE models was highly correlated with experimental measurements (R2 >0.82). Higher but still reasonable errors were found for the Cartesian components. The models tended to overestimate local displacements in the longitudinal direction (R2 = 0.69–0.90, slope of the regression line=0.50–0.97). Errors in the prediction of structural mechanical properties were 14% ± 11% for stiffness and 9% ± 9% for strength. In conclusion, the DVC approach has been applied to the validation of microFE models of the mouse tibia. The predictions of the models for both structural and local properties have been found reasonable for most preclinical applications

    Accuracy of in vivo microCT imaging in assessing the microstructural properties of the mouse tibia subchondral bone

    Get PDF
    Osteoarthritis (OA) is one of the most common musculoskeletal diseases. OA is characterized by degeneration of the articular cartilage as well as the underlying subchondral bone. Post-traumatic osteoarthritis (PTOA) is a subset of OA caused by mechanical trauma. Mouse models, such as destabilization of the medial meniscus (DMM), are useful to study PTOA. Ex vivo micro-Computed Tomography (microCT) imaging is the predominant technique used to scan the mouse knee in OA studies. Nevertheless, in vivo microCT enables the longitudinal assessment of bone microstructure, reducing measurement variability and number of animals required. The effect of image resolution in measuring subchondral bone parameters was previously evaluated only for a limited number of parameters. The aim of this study was to evaluate the ability of in vivo microCT imaging in measuring the microstructural properties of the mouse tibia trabecular and cortical subchondral bone, with respect to ex vivo high resolution imaging, in a DMM model of PTOA. Sixteen male C57BL/6J mice received DMM surgery or sham operation at 14 weeks of age (N=8 per group). The right knee of each mouse was microCT scanned in vivo (10.4μm voxel size) and ex vivo (4.35μm voxel size) at the age of 26 weeks. Each image was aligned to a reference image using rigid registration. The subchondral cortical bone plate thickness was measured at the lateral and medial condyles. Standard morphometric parameters were measured in the subchondral trabecular bone. In vivo microCT imaging led to significant underestimation of bone volume fraction (-14%), bone surface density (-3%) and trabecular number (-16%), whereas trabecular thickness (+3%) and separation (+5%) were significantly overestimated. Nevertheless, most trabecular parameters measured in vivo were well correlated with ex vivo measurements (R2 = 0.69-0.81). Degree of anisotropy, structure model index and connectivity density were measured in vivo with lower accuracy. Excellent accuracy was found for cortical thickness measurements. In conclusion, this study identified what bone morphological parameters can be reliably measured by in vivo microCT imaging of the subchondral bone in the mouse tibia. It highlights that this approach can be used to study longitudinal effects of diseases and treatments on the subchondral cortical bone and on most subchondral trabecular bone parameters, but systematic over- or under-estimations should be considered when interpreting the results

    The application of digital volume correlation (DVC) to evaluate strain predictions generated by finite element models of the osteoarthritic humeral head

    Get PDF
    Continuum-level finite element models (FEMs) of the humerus offer the ability to evaluate joint replacement designs preclinically; however, experimental validation of these models is critical to ensure accuracy. The objective of the current study was to quantify experimental full-field strain magnitudes within osteoarthritic (OA) humeral heads by combining mechanical loading with volumetric microCT imaging and digital volume correlation (DVC). The experimental data was used to evaluate the accuracy of corresponding FEMs. Six OA humeral head osteotomies were harvested from patients being treated with total shoulder arthroplasty and mechanical testing was performed within a microCT scanner. MicroCT images (33.5 µm isotropic voxels) were obtained in a pre- and post-loaded state and BoneDVC was used to quantify full-field experimental strains (≈ 1 mm nodal spacing, accuracy = 351 µstrain, precision = 518 µstrain). Continuum-level FEMs with two types of boundary conditions (BCs) were simulated: DVC-driven and force-driven. Accuracy of the FEMs was found to be sensitive to the BC simulated with better agreement found with the use of DVC-driven BCs (slope = 0.83, r2 = 0.80) compared to force-driven BCs (slope = 0.22, r2 = 0.12). This study quantified mechanical strain distributions within OA trabecular bone and demonstrated the importance of BCs to ensure the accuracy of predictions generated by corresponding FEMs
    corecore