108 research outputs found

    Neurological Disease Rises from Ocean to Bring Model for Human Epilepsy to Life

    Get PDF
    Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages

    Site-Directed Mutations and the Polymorphic Variant Ala160Thr in the Human Thromboxane Receptor Uncover a Structural Role for Transmembrane Helix 4

    Get PDF
    The human thromboxane A2 receptor (TP), belongs to the prostanoid subfamily of Class A GPCRs and mediates vasoconstriction and promotes thrombosis on binding to thromboxane (TXA2). In Class A GPCRs, transmembrane (TM) helix 4 appears to be a hot spot for non-synonymous single nucleotide polymorphic (nsSNP) variants. Interestingly, A160T is a novel nsSNP variant with unknown structure and function. Additionally, within this helix in TP, Ala1604.53 is highly conserved as is Gly1644.57. Here we target Ala1604.53 and Gly1644.57 in the TP for detailed structure-function analysis. Amino acid replacements with smaller residues, A160S and G164A mutants, were tolerated, while bulkier beta-branched replacements, A160T and A160V showed a significant decrease in receptor expression (Bmax). The nsSNP variant A160T displayed significant agonist-independent activity (constitutive activity). Guided by molecular modeling, a series of compensatory mutations were made on TM3, in order to accommodate the bulkier replacements on TM4. The A160V/F115A double mutant showed a moderate increase in expression level compared to either A160V or F115A single mutants. Thermal activity assays showed decrease in receptor stability in the order, wild type>A160S>A160V>A160T>G164A, with G164A being the least stable. Our study reveals that Ala1604.53 and Gly1644.57 in the TP play critical structural roles in packing of TM3 and TM4 helices. Naturally occurring mutations in conjunction with site-directed replacements can serve as powerful tools in assessing the importance of regional helix-helix interactions

    Preventive Paediatrics

    No full text

    Effect of Pyridoxine Deficiency in Young-Rats on High-Affinity Serotonin and Dopamine Receptors

    No full text
    The high-affinity bindings of [3H]-5-hydroxytryptamine to serotonin S-1 receptors, [3H]-ketanserin to serotonin S-2 receptors in the cerebral cortex, [3H]- fluphenazine to dopamine D-1 receptors, and [3H]-spiroperidol to dopamine D-2 receptors in the corpus striatum were studied in pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding (Bmax) of serotonin S-1 and S-2 receptors with a significant decrease in their binding affinities (Kd). However, there were no significant changes either in the maximal binding or binding affinity of striatal dopamine D- 1 and D-2 receptors. Receptor sensitivity seems to correlate negatively with the corresponding neurotransmitter concentrations in the pyridoxine-deficient rats

    Chronic catheterization using vascular-access-port in rats: blood sampling with minimal stress for plasma catecholamine determination

    No full text
    Chronic catheterization is illustrated using vascular-access-port model SLA where the port is surgically placed subcutaneously on the back of the rat. The catheter is tunnelled to the neck and inserted into the jugular vein . Within 24 h rats showed normal blood pressure and blood samples were collected at intervals with minimal stress to the animals . A comparison of the plasma catecholamine of blood collected from vascular-access-ports with that obtained from decapitation indicates that there was minimal stress to the rats when blood was drawn through the vascular-access-port

    Enhancement Of High Affinity Y-Aminobutyric Acid Receptor Binding In Cerebellum Of Pyridoxine-Deficient Rat

    No full text
    The high-affinity of [3H]y-aminobutyric acid (GABA) to GABAA receptors and [3H]baclofen to GABAB receptors were studied in the cerebellum of pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding ( Bmax) of both GABAA and GABAB receptors with no significant difference in their binding affinities (Kd). The changes observed suggest a supersensitivity of GABAA and GABAB receptors which seems to correlate negatively with the concentration of GABA in the cerebellum of pyridoxine-deficient rats

    Consequences of Decreased Brain Serotonin in the Pyridoxine Deficient Young Rat

    No full text
    The concentrations of serotonin in various brain areas were significantly decreased in the pyridoxine-deficient young rat. 2. There was no change in the concentration of dopamine. 3. Both Bmax and Kid of [3H]serotonin binding to membrane preparations from cerebral cortex were increased in deficiency and were restored to normal upon pyridoxine supplementation. 4. There was no change in [3H]spiroperidol binding to corpus striatal membrane preparations in pyridoxine-deficient rats

    Studies on the nutrition of urban population groups

    No full text
    A diet survey has been carried out in Vellore town. The survey included 507 families divided into 11 groups. The caloric intake for the poorest section is appalingly low. Protein and fat intakes are also extremely low. The diet of the poor classes is generally deficient in quality as well as quantity. It is not only a question of lack of vitamins but also of fats, proteins, minerals and even caloris. The amino acid pattern of the diets of poor people is discussed in relation to its possible role in producing liver injury
    • …
    corecore