1,049 research outputs found
An evaluation of potentially useful separator materials for nickel-cadmium (Ni-Cd] satellite batteries
An evaluation intended to determine the potential suitability and probable efficacy of a group of separator materials for use in nickel-cadmium (Ni-Cd) satellite batteries was carried out. These results were obtained using test procedures established in an earlier evaluation of other separator materials, some of which were used in experimental battery cells subjected to simulated use conditions. The properties that appear to be most important are: high electrolyte absorptivity, good electrolyte retention, low specific resistivity, rapid wettability and low resistance to air permeation. Wicking characteristics and wet-out time seem to be more important with respect to the initial filling of the battery with the electrolyte
Quenched Dislocation Enhanced Supersolid Ordering
I show using Landau theory that quenched dislocations can facilitate the
supersolid (SS) to normal solid (NS) transition, making it possible for the
transition to occur even if it does not in a dislocation-free crystal. I make
detailed predictions for the dependence of the SS to NS transition temperature
T_c(L), superfluid density %\rho_S(T, L), and specific heat C(T,L) on
temperature T and dislocation spacing L, all of which can be tested against
experiments. The results should also be applicable to an enormous variety of
other systems, including, e.g., ferromagnets.Comment: 5 pages, 2 figure
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Long-lived Giant Number Fluctuations in a Swarming Granular Nematic
Coherently moving flocks of birds, beasts or bacteria are examples of living
matter with spontaneous orientational order. How do these systems differ from
thermal equilibrium systems with such liquid-crystalline order? Working with a
fluidized monolayer of macroscopic rods in the nematic liquid crystalline
phase, we find giant number fluctuations consistent with a standard deviation
growing linearly with the mean, in contrast to any situation where the Central
Limit Theorem applies. These fluctuations are long-lived, decaying only as a
logarithmic function of time. This shows that flocking, coherent motion and
large-scale inhomogeneity can appear in a system in which particles do not
communicate except by contact.Comment: This is the author's version of the work. It is posted here by
permission of the AAAS. The definitive version is to appear in SCIENC
A Discotic Disguised as a Smectic: A Hybrid Columnar Bragg Glass
We show that discotics, lying deep in the columnar phase, can exhibit an
x-ray scattering pattern which mimics that of a somewhat unusual smectic liquid
crystal. This exotic, new glassy phase of columnar liquid crystals, which we
call a ``hybrid columnar Bragg glass'', can be achieved by confining a columnar
liquid crystal in an anisotropic random environment of e.g., strained aerogel.
Long-ranged orientational order in this phase makes {\em single domain} x-ray
scattering possible, from which a wealth of information could be extracted. We
give detailed quantitative predictions for the scattering pattern in addition
to exponents characterizing anomalous elasticity of the system.Comment: 4 RevTeX pgs, 2 eps figures. To appear in PR
Ground state properties of solid-on-solid models with disordered substrates
We study the glassy super-rough phase of a class of solid-on-solid models
with a disordered substrate in the limit of vanishing temperature by means of
exact ground states, which we determine with a newly developed minimum cost
flow algorithm. Results for the height-height correlation function are compared
with analytical and numerical predictions. The domain wall energy of a boundary
induced step grows logarithmically with system size, indicating the marginal
stability of the ground state, and the fractal dimension of the step is
estimated. The sensibility of the ground state with respect to infinitesimal
variations of the quenched disorder is analyzed.Comment: 4 pages RevTeX, 3 eps-figures include
Sliding Phases in XY-Models, Crystals, and Cationic Lipid-DNA Complexes
We predict the existence of a totally new class of phases in weakly coupled,
three-dimensional stacks of two-dimensional (2D) XY-models. These ``sliding
phases'' behave essentially like decoupled, independent 2D XY-models with
precisely zero free energy cost associated with rotating spins in one layer
relative to those in neighboring layers. As a result, the two-point spin
correlation function decays algebraically with in-plane separation. Our
results, which contradict past studies because we include higher-gradient
couplings between layers, also apply to crystals and may explain recently
observed behavior in cationic lipid-DNA complexes.Comment: 4 pages of double column text in REVTEX format and 1 postscript
figur
Vortex Glass Phase and Universal Susceptibility Variations in Planar Array of Flux Lines
Some of the properties of the low temperature vortex-glass phase of
randomly-pinned flux lines in 1+1 dimensions are studied. The flux arrays are
found to be sensitive to small changes in external parameters such as the
magnetic field or temperature. These effects are captured by the variations in
the magnetic response and noise, which have universal statistics and should
provide an unambiguous signature of the glass phase.Comment: 11 pages and no figures; revtex 3.
Two new topologically ordered glass phases of smectics confined in anisotropic random media
We show that smectic liquid crystals confined in_anisotropic_ porous
structures such as e.g.,_strained_ aerogel or aerosil exhibit two new glassy
phases. The strain both ensures the stability of these phases and determines
their nature. One type of strain induces an ``XY Bragg glass'', while the other
creates a novel, triaxially anisotropic ``m=1 Bragg glass''. The latter
exhibits anomalous elasticity, characterized by exponents that we calculate to
high precision. We predict the phase diagram for the system, and numerous other
experimental observables.Comment: 4 RevTeX pgs, 2 eps figures, submitted to Phys. Rev. Let
- …