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Smectics in strained aerogel exhibit two new glassy phases. The strain both ensures the stability
of these phases and determines their nature. One type of strain induces an “XY Bragg glass,” while 
the other creates a novel, triaxially anisotropic “m � 1 Bragg glass.” The latter exhibits anomalous 
elasticity, characterized by exponents that we calculate to high precision. We predict the phase diagra
and numerous other experimentally observable scaling laws, for the system. 
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Liquid crystals confined in random porous structure
have become a subject of considerable interest [1]. 
recent theoretical study unambiguously demonstrated t
conventional (quasi-)long-ranged smectic order is impo
sible in 3D in the presence of (even arbitrarily weak
quenched pinning imposed by these random structur
e.g., aerogel [2]. It was proposed that a positionally d
ordered but topologically ordered “smectic Bragg glas
(SBG) phase would become the new thermodynamica
distinct low-temperature phase in these smectic system
However, for quenched random isotropic structures it was 
impossible to make a compelling theoretical argument f
the stability of such a glass phase. 

In this Letter, we make such a compelling argume
for smectics in a uniaxially strained aerogel, which cer­
tainly exhibit two types of low-T BG phases that are
thermodynamically distinct from the high-T nematic [or 
perhaps “nematic elastic glass” (NEG)] and isotropic liq
uid phases. For parallel nematogen-surface alignme
(assumed throughout), a stretch (Fig. 1a) of the aero
will lead to an “XY-BG” in the isotropic universality 
class of randomly pinned vortex lattices, CDW’s, and ra
dom field XY magnets (RF-XY ) [3], while a compression 
(Fig. 1b) will lead to a novel “m � 1 BG,” with triaxially 
anisotropic scaling, that should be similar to that of a d
cotic in isotropic aerogel [4]. For homeotropic alignment
these two phases reverse with respect to stretch and c
pression, with all other results remaining unchanged. 

We predict two possible low, constant-T phase dia­
grams, depending on whether the SBG is stable (Fig. 2

FIG. 1. (a) Stretch along the ẑ direction. (b) Compression 
along the � direction. 
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or not (Fig. 2a). Recent experiments suggest the for
possibility. The loci of the phase boundaries in Fig. 
for small strain, s, are universal and satisfy 

D�s� ~ �K3B�1�2�s�B�r , (1) 

where s is proportional to the uniaxial stress applied to t
aerogel fibers, D is a measure of the tilt disorder, whic
in the simplest microscopic model is proportional to t
aerogel density rA [2] (where the proportionality constan
is an increasing function of the anchoring energy), B and 
K are bulk smectic elastic moduli, and r is a universal 
exponent expressible in terms of anomalous elasti
exponents h̃ B and h̃ K for unstrained aerogel. Our best
estimate is r � 2�5 in 3D [2]. 

Our model of the smectic in aerogel treats the lo
smectic layer displacement u�r� and the local nematic
director n̂ �r� as the only important fluctuating quantitie
ignoring fluctuations in the magnitude jcj of the smectic 
order parameter c � jcjeiqou�r� about its mean jcoj. 

The important effects of the aerogel are completely 
described by only two disorder types. One is tR 
random-field translational disorder dHrf � Re dd r 3 

iqou�r�jcojV �r�e , coupling to u�r�, where V �r� is a 
complex random potential which at long scales can
accurately represented as zero-mean and short-ranged 
[2] Gaussian statistics with V �r�V ��r0� � D̃ 

V d
d�r 2 r0�. 

The other type of disorder is the random-tilt orientatioR 
disorder given by dHt � 2 ddr�g�r� ? n̂ �2, describing 
the tendency of nematogens n̂ �r� to align along the local
aerogel strand directed along g�r�, and at long scales is

FIG. 2. Two possible phase diagram topologies, depend
whether SBG is stable for isotropic confinement �s � 0�. 
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completely described by short-ranged [2] correlationsp
gi�r�gj�r0� � 1�2� D dij 2 geiej�dd�r 2 r0�, where ê 
is the uniaxial direction (i.e., the axis of the strain 

˜applied to the aerogel). In the above DV � 
Gu�af �Lf �d2df �1�afqo�, D � Gn�af �Lf �d2df , df is 
the aerogel’s fractal dimension for scales af , r , Lf , 
and Gu, Gn, g are phenomenological parameters, where 
g is the anisotropy parameter which at small strains is p
proportional to D and the stress s applied to the aerogel. 
g , 0 for a stretch illustrated in Fig. 1a. 

Assuming (as we will verify a posteriori) that fluctua­
tions in n̂ from a perfect alignment with the smectic layer 
normal (taken along ẑ) are small allows us to integrate n̂ 
out of the partition function, with the only effect of re­
placing dn ! = �u (Higg’s mechanism) [2]. The result­
ing Hamiltonian is given by 
1364 
    
        

   

  
   

 

  
    

 
  

" √ !2 Z K B 12H � �= �u�2 1 ≠zu 2 �= �u�2 

r 2 2 2 

2 �g�r� ? =�u�2 2 2gz �r�g�r� ? =�u # 

1 �gz�r�= �u�2 2 jco jRe�V �r�eiqou�r�� . (2) 

The form of the anharmonic elastic terms is dictated by 
the underlying invariance of the bulk smectic phase under 
rotations about any axis lying in the r� plane. 

After introducing n replica fields ua and integrating out 
the disorder, we obtain a Hamiltonian whose form strongly 
depends on the type of uniaxial strain. Stretching the 
aerogel strands will cause the layer normal, ẑ, to align 
with ê (Fig. 1a). Smectics confined inside this structure, 
to harmonic order in elasticity (with elastic anharmonicity 
irrelevant), are described by 
  
       

   
   

        
  

nZ X1 2HXY � �K�= �ua�2 1 B�≠zua�2 1 jgj �= �ua�2�
2 r a�1 Z n1 X p

2 ��D 1  D jgj� �= �ua� ? �= �ub� 1 DV cos�qo�ua 2 ub��� , (3)
2T r a,b�1 



   

 

 

    

 

˜where DV � 2jcoj2DV . At scales smaller than a crossover 
cscale j� (see below), the behavior is that of a smectic 

pinned by isotropic unstrained aerogel [2]. On longer 
scales, however, the scaling behavior of such an anisotropi­
cally pinned smectic crosses over to that of the RF-XY 
model. We therefore predict that smectics pinned by such 
anisotropic weak disorder will exhibit the XY -BG phase, 
with its universal disorder-induced logarithmic layer wan­

2dering character, ��u�r� 2 u�0��2� � C�d� �lnr��q [3].o 
However, unlike 3D bulk smectics, which show the fa­
mous Landau-Peierls thermally driven lnr fluctuations, 
   
 

   

   

 
 

 
 

    

here C�d� is universal, the logarithm persists in all 2 ,
 
d , 4, and smectic layers are pinned. The immediate 

consequence is that x-ray scattering will exhibit real-space 

power-law decay �rG �r�r2G�0�� ~ r2h�G� with a univer­
sal h�G� exponent �G � mqo�. 


If, instead, the aerogel is uniaxially compressed, i.e., 
g . 0, we expect that one of the (previously soft) r� 
smectic axes (x or y) will orient along the axis of com­
pression êh (Fig. 1b). We denote this êh-directed axis as 
hard �h�, and call the other � axis, orthogonal to êh, the 
soft �s� axis, i.e., r� � �rh, rs�. The resulting effective 
Hamiltonian describing this system at long scales is 
 
  

  
 

    
 

 
   

  
 

       
  

" √ 
nZ X 

2Hm�1 � 
1 

K�= �ua�2 1 B ≠zua 2 
1 

�= �ua2 r a�1 2 

!2 # 
nX 

�2 1 g�=hua�2 2
D

�= �ua� ? �= �ub� , (4)
T a,b�1 
 

 
 

    
 

  
 

  

 

 

 

where we have neglected the positional random-field 
disorder, DV , which can be shown to be subdomi­
nant at long length scales [4]. Hm�1 [Eq. (4)] im­
plies that the noninteracting propagator Gab�q� �  
V 2 21�ua�q�ub�2q��0 � TG�q�dab 1 Dq�G�q�2 , with 

4 2G�q� �  1��Kq� 1 gqh 1 Bq2�. As usual, at longz 
length scales, the disorder (D) contribution to layer 
roughness dominates over the thermal �T � part of Gab�q�. 

We first note that for vanishing strain g * 0, or equiva­
lently at very short length scales, Hm�1 and the correspond­
ing propagator reduce to those characterizing a smectic 
in unstrained isotropic aerogel [2]. The asymptotic long 
scale behavior of the full model described by Hm�1 is 
reached via two independent crossovers from the Gaussian, 
unstrained fixed point, during which the aerogel anisotropy 
g, and the nonlinear elasticity, respectively, become im­
portant. The qualitative form of this crossover is deter­
mined by the relative magnitudes of the corresponding bare 
couplings. For sufficiently weak strain �g , gc�, the elas­
  
 

 
 

    
    
   

 

 
 

  

   
 

tic anharmonicity becomes important first and this occurs 
˜ NL 

~ � K
5�2 

�1��52at a crossover length scale j� B1�2D 
d� determined 

by the smectic in unstrained aerogel [2]. In this case, 
the system first crosses over from the unstrained Gauss­
ian to the unstrained anomalous fixed point. The final 
crossover to asymptotic strained anomalous behavior takes 
place within the anomalously elastic smectic described by 
the wave-vector–dependent elastic constants [2] and oc­

4 2curs at q� such that K̃ �q��q� � gq�, with K̃ �q�� cal­
c ˜NL hK �1��22h̃ K �culated in Ref. [2], i.e., at j� � �K��g�j� �� ̃  

(h̃ B, h̃ K are the exponents for isotropic disorder). 
For the remainder of this paper, we will focus on the 

other crossover scenario in which the strain g is suffi­
ciently large �g , gc� that the crossover from Gaussian 
unstrained to Gaussian strained elasticity takes place at p
c

j� � K�g, before elastic nonlinearities become impor­
tant. The critical value of g that delineates between these 

˜NL�2two crossover scenarios is gc � K��j� . 
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p
cFor g . gc, on scales longer than j� � K�g the 

effective Hamiltonian (and the propagator G derived from 
it) is identical to that given in Eq. (4), but with all = � 
replaced by = s, with rs a subset of r� axes remaining soft 
even in the presence of aerogel anisotropy. Our goal then 
is to assess the role of elastic nonlinearities, at this new 
strained Gaussian fixed point, which become important 
beyond an even longer nonlinear crossover length scale 
jNL (along the “soft” direction) [6]. s 

The scale jNL can be determined from a simple pertur­s 
bation theory in these nonlinear couplings of Hm�1, and is 
the length at which the effects of anharmonic elastic terms 
become significant. For example, the diagrammatic cor­
rection to the bulk modulus B, due to these elastic nonlin­
earities, is given by Z .B2 

2 4dB�L� � 2 �TG�q�2 1 2Dq G�q�3�q , (5a)s s2 q √ 
B3 

!1�2 
2Cd21bd21 2dL72� D 

d2 d , (5b)
2p�7 2 2d� g 2K72 

where in the above we have kept only the dominant 
disorder-induced infrared divergent contribution, cut off 
these long-scale divergences by qs . 1�L, and analyt­
ically continued to arbitrary dimension d, with a single 
smectic ordering coordinate z, a single soft coordinate rs, 
and d 2 2 hard axes with coordinate rh. The constant 
Cd � 2pd�2���2p�dG�d�2�� and bd � G�d�2�G�3 2 
d�2��2. For d , duc � 7�2, the corrections to B 
[Eq. (5b)] grow with cutoff L and become significant for 

NL NLscales L . j  , such that jdB�j �j � B, signaling the s s 
breakdown of conventional harmonic elasticity. We find √ !1��722d�d��2 �d22��2 

NL � 
2p�7 2 2d�K �72 g

j . (6)s B1�2Cd21bd21D 

The corresponding lengths along the z and h axes 
NL NL NL NLare given by jz � �js �2�lB and jh � �js ��lg , 

where lB � �K�B�1�2 and lg � �K�g�1�2 . Identical 
crossover length scales are obtained if one instead studies 
perturbative corrections to K or D. 

NLTo go beyond these crossover length scales jz,h,s we use 
the renormalization group (RG), which consists of integrat­
ing out short-scale modes, perturbatively in elastic nonlin­
earities, and rescaling the lengths and long wavelength part 

0 � 0 h � 0 zof the fields with rs � r e , rh � rhev , z � z ev �, and s 
� 0ua�r� � ex u �r0�, so as to restore the uv cutoff back to a 

L � 1�a. The underlying rotational invariance ensures 
that the graphical corrections preserve the rotationally in­
variant operator �≠zua 2 1

2 �= sua�2�, renormalizing it as 
a whole. It is therefore convenient (but not necessary) to 
choose the dimensional rescaling that also preserves this 
operator; the appropriate choice is x � 2 2 vz . 

Using the above-defined analytical continuation in d, 
RG to one-loop order, gives the following flow equations: µ ∂ 

dB 3g
� 5 1 �d 2 2�vh 2 3vz 2 p B , (7a)

d� 32 2 
 
 

        
  

 
 

        
  

  

  
    

  
  

  
  

 

      

 

     

 

         

        

         

      
       

 
     

  
 

  
          

        
    

  

   
   

 
   

        
       

   
   

      
  

    
  

   
 

        

µ ∂ 
dK 

� 1 1 �d 2 2�vh 2 vz 1 p
g

K , (7b)
d� 8 2 µ ∂ 

d�D�T� g
� 3 1 �d 2 2�vh 2 vz 1 p �D�T � ,

d� 32 2 
(7c) 

where we have defined a dimensionless measure of disor­
d d2 2d2der g � DB��K72 g 2�1�2Cd21L 7, which flows ac­

cording to 
dg��� 15 2� 2eg 2 p g , (8)
d� 64 2 

with e � 7�2 2 d. Because all relevant anharmonic 
terms in Hm�1 appear with = s, there are no graphs 
correcting g and therefore no anomalous g elasticity to 
all orders. As required, the flow of g is independent of 
the arbitrary choice of the anisotropy rescaling exponents 
vh and vz . The growth of g for d , duc � 7�2 is an 
indication that the long-scale properties of our system, 
even at a finite temperature T , are dominated by disorder. 
The eventual termination of this flowpat a nontrivial, 
glassy T � 0 fixed point g� � e128 2�15, leads to 
strong disorder-generated power-law anomalous elasticity. 

One consequence of the anomalous elasticity is that the 
long-scale elastic constants K , B, and disorder variance D 
become wave vector dependent: 

K h zK�k� � Kk2h fK �kh�kz , kz�kz � , (9a)s s s 

B h zB�k� � Bkh fB�kh�kz , kz�kz � , (9b)s s s 

k2hD h zD�k� � D fD�kh�kz , kz �kz � , (9c)s s s 

g�k� � g, with the anisotropy exponents zz � 2 2 
�hB 1 hK ��2 and zh � 2 2 hK �2. The exponents obey 

h 7 2 d
7 2 2d 1 hD � B 

1 hK , (10)
2 2 

exactly, due to the underlying exact rotational invariance 
of Eq. (4) about êh. To leading order in e � 7�2 2 d,p p
hK � g��8 2 � 16e�15 � 8�15,p hB � 3g��32 2 � 
12e�15 � 2�5, and hD � g��32 2 � 2e�15 � 2�15, 
the last equalities holding in d � 3 �e � 1�2�. Since 
e � 1�2 is quite small, we expect these exponents to be 
quantitatively accurate. 

The RG e � 7�2 2 d expansion treatment presented 
above is nicely complemented by an ê � 4 2 d expan­
sion arising from a different analytical continuation to d 
dimensions, in which there are d 2 2 soft coordinates rs 
and only a single hard axis. The corresponding exponents 
are given by ĥ K � 3ê�8 � 3�8, ĥ B � 3ê�4 � 3�4, and 
ĥ D � ê�8 � 1�8, with good agreement in d � 3 (except 
for hB) with the e � 7�2 2 d expansion results. The ex­
act exponent relation for the ê � 4 2 d expansion is given 
by 4 2 d 1 ĥ D � ĥ B�2 1 2ĥK and reassuringly agrees 
with Eq. (10) in d � 3. 

Further accuracy can be gained by weighted averag­
ing of the 7�2 2 d and 4 2 d expansions, according to 

s
hK ,D ! �4hK ,D 1 ĥ K ,D��5. The factor of 4 reflects the 
higher accuracy of the 7�2 2 d � e expansion. The pre­
diction for hB is then made using the exact scaling relation, 
giving, in d � 3, hK � 0.50, hB � 0.26, and hD � 0.13. 
1365 
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We now study the translational and orientational order 
in the presence of this strong disorder-driven anomalous 
1366 
elasticity. The former is characterized by the growth of 
smectic layer roughness with, e.g., rs: 
         � C�rs� �  ��u�rs, 0h, 0z� 2 u�0s, 0h, 0z��2� � 
Z
 d3k 

2�1 2 cos�ksrs��D�k�k2 G2�k� , (11)

�2p�3 
 
 

     
 

 
 

  

from which the translational correlation length jX (the in­s 
verse of the x-ray diffraction peak width), can be computed 

Xvia the condition C�rs � j � �  a2, where a is the smec­s 
tic layer spacing. jX is determined by the relative order of s 

X c Xmany crossover length scales. For j , j 
, j
 is iden­s � s 
 

tical to that due to isotropic disorder [2]. In the opposite 
cregime, jX . j�
, there are three possibilities, depending s 

on whether the anomalous elasticity sets in before or after 
the layer roughness reaches a, and whether the isotropic­
to-anisotropic crossover takes place near the harmonic or 
the anomalous elastic fixed point: 
 

    
   

  
    

 
 

   

         
 

 
  

 

NL� a �2	 c X NLj
 ,
 	 j
 , j 
  , j 
  , g . g 

 s lB	 � s s c 
8 ><
>:


X NL� a �2��hB1hK �	 c NL X
j
s	 �
 js
 lB 

,
 j�
 , js
  , js
, g . g  c (12)
 

 c �2��hB1h c NL��h̃B 1h̃K ���hB1hK � ˜NL c Xj�
 � a K ��j��j̃


�	 ,
 j� , j�
  , js
, g , g  c .lB 
 
 

 

   
 

 

 
 

  

   

  
 

 

  
 

  
 

   

 

From these correlation lengths, we see that it is the ratio 
a�lB which determines whether jX lies in a length scale s 
regime in which anharmonic effects are important. For 
small B, lB ¿ a and anharmonic effects are unimportant. 
Note also that, in the strained length scale regime, jX 

s 
will depend on B, K , D, and g. Thus, one could test 
the predictions of Eq. (12) by measuring the dependence 
of jX on the strength of compression (i.e., g), which s 
could be adjusted directly. In all length scale regimes, the 
x-ray correlation length is finite even as T ! 0, signaling 
the destruction of the conventional (quasi-)long-ranged 
translational smectic order. 

As emphasized in Ref. [2], this lack of translational 
order does not imply that the low-temperature phase re­
placing the smectic is simply nematic (or isotropic). Our 
detailed calculations [4] indicate that, in fact, despite the 
lack of the (quasi-)long-ranged smectic order dislocation 
loops remain bound for weak anisotropic disorder, and 
therefore the low-temperature phase replacing the smec­
tic must be distinct from the nematic, separated from it 
by a thermodynamically sharp dislocation unbinding phase 
transition. We call this low-temperature phase the “m � 1 
Bragg glass.” 

The stability of this exotic glass phase is contingent upon 
our implicit assumption of long-ranged orientational (ne­
matic) order. That this assumption is valid can be eas­
ily seen by computing �jdnj2� � �j=uj2�, and taking into 
account the wave-vector–dependent elastic moduli K�k� 
and B�k� and disorder variance D�k�, as given by Eqs. (9). 
There are unstrained and strained contributions to �jdnj2�, 

c	 carising from modes with q� . 1�j�
 and q� , 1�j�,
 
respectively. Using the corresponding anomalous expo­
nents hK , hB, hD [2], in the computation of the strained 
and unstrained parts, for finite strain g and weak disor­
der D, we indeed find long-ranged orientational order. In 
the weak strain limit �g , gc�, the unstrained part domi­
nates, in 3D growing in a universal way with decreasing 

m m2strain g and increasing disorder D as �D �g 1�, where 
m � h̃B��2 2 h̃K �. Using Ref. [2], we estimate m to be 
3�2. Since �jdnj2� can therefore get arbitrarily large at 
   

 

  
  

  

 

small g and large D, we expect our system to be in the 
orientationally disordered liquid phase in this range of pa­
rameters. On the other hand, for large g and small D the 
system will exhibit long-ranged orientational order and, as 
illustrated in Fig. 2a, will therefore be in the m � 1 BG 
phase. In analogy with the Lindemann criterion for melt­
ing, the phase boundary is roughly determined by the con­
dition �jdnj2� �  O�1�. This leads to the phase boundary 
quoted in Eq. (1), and illustrated in Fig. 2a. 

On the other hand, rather than rely on the untrustworthy 
(in 3D) 5 2 e  expansion, which predicts no SBG for 
isotropic �s � 0� disorder [2], we can infer the topology of 
the phase diagram based on the preliminary experimental 
evidence [5], which suggests the stability of SBG for 
weak isotropic disorder. This suggests that the m � 1 BG 
extends all the way down to vanishing strain, s . 0, as  
illustrated in Fig. 2b. 

Light scattering, which measures director correlation 
�dni�q�dnj�2q�� provides an independent means to test 
the predictions of the theory. Finally, since anomalous 
elasticity also implies a nonlinear stress-strain relation at 
arbitrarily weak stress, our predictions for it can be inde­
pendently probed in an ac acoustic experiment, searching 
for an unusually large second harmonic response. 
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