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Smectics instrained aerogel exhibit two new glassy phases. The strain both ensures the stability
of these phases and determines their nature. One type of strain inducés Bnayjg glass,” while
the other creates a novel, triaxially anisotropic #ml Bragg glass.” The latter exhibits anomalous
elasticity, characterized by exponents that we calculate to high precision. We predict the phase diagram,
and numerous other experimentally observable scaling laws, for the system.

PACS numbers: 64.60.Fr, 05.40.—a, 82.65.Dp

Liquid crystals confined in random porous structure®r not (Fig. 2a). Recent experiments suggest the former
have become a subject of considerable interest [1]. possibility. The loci of the phase boundaries in Fig. 2a,
recent theoretical study unambiguously demonstrated thédr small straing, areuniversal and satisfy
conventional (quasi-)long-ranged smectic order is impos-
sible in 3D in the presence of (even arbitrarily weak) A(o) = (K*B)"*(a/B)", (1)
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for smectics in ainiaxially strained aerogel, whickcer estimate i ~ 2/5 in 3D [2].' .
tainly exhibit two types of low-TBG phases that are Our model of the smectic in aerogel treats the local

thermodynamically distinct from the high-filematic [or Z?ee;ttc;fﬁlaea:sdtﬁgIitr:l(layn}?nm;(gr)ta%rt]?‘IL}Eti ;gﬁgl qlzg:t?t?gs
erhaps “nematic elastic glass” (NEG)] and isotropic lig- . . . ) e
P P 9 ( ) pic 119 noring fluctuations in the magnitudi¢| of the smectic

uid phases. For parallel nematogen-surface alignme o '

(assumed throughout), a stretch (Fig. 1a) of the aeroggfder parametep = |iplet@:™) about its meaiy, .
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pression, with all other results remaining unchanged. The other type of disorder is the random-tilt orientational

We predict two possible low, constantjthase dia- disorder given byoH, = — [d’r[g(r) - AF, describing

grams, depending on whether the SBG is stable (Fig. 2i§j€ tendency of nematogefigr) to align along the local
aerogel strand directed alorgr), and at long scales is
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FIG. 1. (a) Stretch along the direction. (b) Compression FIG. 2. Two possible phase diagram topologies, depending on
along thel direction. whether SBG is stable for isotropic confinemgnt= 0).
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completely described by short-ranged [2] correlations
g,»(r)gj(r’) = ]/2(\/K 6ij - 'ye,'ej)Sd(r - l'/), where &
is the uniaxial direction (i.e., the axis of the strain
applied to the aerogel). In the above Ay, =
Lular/Ly)*~4(1/arq,), A = T,lap/Lp)? %, df is
the aerogel’s fractal dimension for scales ay < r < Ly,
and I',, T',, y are phenomenological parameters, where
v is the anisotropy parameter which at small strains is
proportional to +/A and the stress o applied to the aerogel.
v < 0 for a stretch illustrated in Fig. 1a.

Assuming (as we will verify a posteriori) that fluctua-
tions in fi from a perfect alignment with the smectic layer
normal (taken along Z) are small allows us to integrate i
out of the partition function, with the only effect of re-
placing 6n — V u (Higg’s mechanism) [2]. The result-
ing Hamiltonian is given by

K B I ?
H= ﬁ[;(viu)z + 7(3114 - E(VMV)

—[g(r) - Viul® — 2g,(r)g(r) - Viu
+ [g.(0)V ul — |¢0|R8{V(l‘)€iq”“(r)}] (2)

The form of the anharmonic elastic terms is dictated by
the underlying invariance of the bulk smectic phase under
rotations about any axis lying in the r, plane.

After introducing » replica fields «, and integrating out
the disorder, we obtain a Hamiltonian whose form strongly
depends on the type of uniaxial strain. Stretching the
aerogel strands will cause the layer normal, Z, to align
with & (Fig. 1a). Smectics confined inside this structure,
to harmonic order in elasticity (with elastic anharmonicity

| irrelevant), are described by

Hy = o [ KT + B + 7] (Vo)

r a=1

1 n

2T Jy a,Bf=1
where Ay = 2|4, |2?Ay. Atscales smaller than a crossover
scale £9 (see below), the behavior is that of a smectic
pinned by isotropic unstrained aerogel [2]. On longer
scales, however, the scaling behavior of such an anisotropi-
cally pinned smectic crosses over to that of the RF-XY
model. We therefore predict that smectics pinned by such
anisotropic weak disorder will exhibit the XY-BG phase,
with its universal disorder-induced logarithmic layer wan-
dering character, ([u(r) — u(0)]*) = C(d)(Inr)/q> [3].
However, unlike 3D bulk smectics, which show the fa-
mous Landau-Peierls thermally driven Inr fluctuations,

> LA + VAlYD(Viua) - (Viug) + Ay cos[g, (s —

up)ll, 3)

| here C(d) is universal, the logarithm persists in all 2 <
d < 4, and smectic layers are pinned. The immediate
consequence is that x-ray scattering will exhibit real-space
power-law decay { pg(r)p_g(0)) o r~" with a univer
sal n(G) exponent (G = mgq,).

If, instead, the aerogel is uniaxially compressed, i.e.,
v > 0, we expect that one of the (previously soft) r,
smectic axes (x or y) will orient along the axis of com-
pression &, (Fig. 1b). We denote this &,-directed axis as
hard (%), and call the other L axis, orthogonal to &,, the
soft (s) axis, i.e., r; = (ry,ry). The resulting effective
Hamiltonian describing this system at long scales is

1 n

-3 1%
where we have neglected the positional random-field
disorder, Ay, which can be shown to be subdomi-
nant at long length scales [4]. H,—1 [EQ. (4)] im-
plies that the noninteracting propagator G.g(q) =
V Nua(@ug(=a))o = TG(@)8ap + AgiG(@?,  with
G(q) = 1/(Kql + yqi + Bq?). As usual, at long
length scales, the disorder (A) contribution to layer
roughness dominates over the thermal (T') part of G,z(q).
We first note that for vanishing strain y = 0, or equiva-
lently at very short length scales, H,,—; and the correspond-
ing propagator reduce to those characterizing a smectic
in unstrained isotropic aerogel [2]. The asymptotic long
scale behavior of the full model described by H,—; is
reached via two independent crossovers from the Gaussian,
unstrained fixed point, during which the aerogel anisotropy
v, and the nonlinear elasticity, respectively, become im-
portant. The qualitative form of this crossover is deter-
mined by the relative magnitudes of the corresponding bare
couplings. For sufficiently weak strain (y < vy.), the elas-
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| tic anharmonicity becomes importanst/zfirst and this occurs
ata crossover length scale ZY- o (47:5)1/6~9) determined
by the smectic in unstrained aerogel [2]. In this case,
the system first crosses over from the unstrained Gauss-
ian to the unstrained anomalous fixed point. The final
crossover to asymptotic strained anomalous behavior takes
place within the anomalously elastic smectic described by
the wave-vector—dependent elastic constants [2] and oc-
curs at q such that K(q.)g% = vyq?%, with K(q.) cal-
culated in Ref. [2], i.e., at &5 = [K /[y (&) ]/ @)
(8, Tk are the exponents for isotropic disorder).

For the remainder of this paper, we will focus on the
other crossover scenario in which the strain y is suffi-
ciently large (y < vy.) that the crossover from Gaussian
unstrained to Gaussian strained elasticity takes place at
&7 = +/K /vy, before elastic nonlinearities become impor-
tant. The critical value of y that delineates between these
two crossover scenarios is y. = K /(€Y5)2,




VOLUME 83, NUMBER 7

PHYSICAL REVIEW LETTERS

16 AucusT 1999

For v > vy, on scales longer than &9 = /K/y the
effective Hamiltonian (and the propagator G derived from
it) is identical to that given in Eq. (4), but with all V
replaced by V,, with r, a subset of r, axes remaining soft
even in the presence of aerogel anisotropy. Our goal then
is to assess the role of elastic nonlinearities, at this new
strained Gaussian fixed point, which become important
beyond an even longer nonlinear crossover length scale
ENE (along the “soft” direction) [6].

The scale £V can be determined from a simple pertur-
bation theory in these nonlinear couplings of H,,—, and is
the length at which the effects of anharmonic elastic terms
become significant. For example, the diagrammatic cor-
rection to the bulk modulus B, due to these elastic nonlin-
earities, is given by

2 >
spw) = ~2 [ Tr6(@? + 20260 let, (62)
q

~ —Ca-1Bi-1 A B?
27(7 — 2d) “\ ya—2K74

1/2
) L772d, (5b)

where in the above we have kept only the dominant
disorder-induced infrared divergent contribution, cut off
these long-scale divergences by ¢, > 1/L, and analyt-
ically continued to arbitrary dimension d, with a single
smectic ordering coordinate z, a single soft coordinate ry,
and d — 2 hard axes with coordinate r,. The constant
Cy =272 /[2mw)T(d/2)] and Bg =T(d/2)T(3 —
d/2)/2. For d <d, = 7/2, the corrections to B
[Eq. (5b)] grow with cutoff L and become significant for
scales L > &N such that |6 B(¢ME)| = B, signaling the
breakdown of conventional harmonic elasticity. We find

_ _ 1/(1-2d)
27 (7 — 2d)K T~ 4)/25d=2)/2
i =( 7 ©

Ca-1Ba-1AB!/?

The corresponding lengths along the z and & axes
are given by &N = (&N)2/ap and & = (¢MH)/A,,
where Ag = (K/B)'/? and A, = (K/y)"/?. ldentical
crossover length scales are obtained if one instead studies
perturbative corrections to K or A.

To go beyond these crossover length scales f?f ,ﬁs we use
the renormalization group (RG), which consists of integrat-
ing out short-scale modes, perturbatively in elastic nonlin-
earities, and rescaling the lengths and long wavelength part
of the fields with r, = re®, r, = rhe®*, z = 7’¢®¢, and
uq(r) = eXtul (r'), so as to restore the uv cutoff back to
A ~ 1/a. The underlying rotational invariance ensures
that the graphical corrections preserve the rotationally in-
variant operator [9,u, — %(Vsua)z], renormalizing it as
a whole. It is therefore convenient (but not necessary) to
choose the dimensional rescaling that also preserves this
operator; the appropriate choice is y = 2 — w,.

Using the above-defined analytical continuation in d,
RG to one-loop order, gives the following flow equations:

dB

- = (5 + (d — 2w, — 3w, (7a)

_ 3_g>B
de 3232/

f{—lz = (1 +(d - oy — o, + 8%)1(, (7h)

d(A/T) g
d€ —<3+(d—2)wh—wz+m>(A/T),
(7c)

where we have defined a dimensionless measure of disor-
der g = AB/(K7~4y4=2)1/2C,_; A2?~7 which flows ac-
cording to d2(0) s
8 _ 2
P YW, L ®)
with e =7/2 — d. Because all relevant anharmonic
terms in H,—; appear with Vg, there are no graphs
correcting y and therefore no anomalous vy elasticity to
all orders. As required, the flow of g is independent of
the arbitrary choice of the anisotropy rescaling exponents
w;, and w,. The growth of g for d < d,. = 7/2 is an
indication that the long-scale properties of our system,
even at a finite temperature 7, are dominated by disorder.
The eventual termination of this flow at a nontrivial,
glassy T =0 fixed point g* = €128+/2/15, leads to
strong disorder-generated power-law anomalous elasticity.
One consequence of the anomalous elasticity is that the
long-scale elastic constants K, B, and disorder variance A
become wave vector dependent:

K(k) = Kk, ™ f(kn/kS k. [kE), (9a)
B(k) = Bk] fp(kn/k k. /kS), (9b)
A(k) = Aky ™ falkn/kS &, JKE), (9)

v(k) = y, with the anisotropy exponents /, =2 —
(g + mk)/2and ¢, =2 — mg/2. The exponents obey

7—2d+m=%+72dn,<, (10)
exactly, due to the underlying exact rotational invariance
of Eq. (4) about é,. To leading order in e = 7/2 — d,
nx = g°/8V2 = 16€/15 = 8/15, mp = 3g*/32/2 =
12€/15 = 2/5, and nma = g*/32+/2 = 2€/15 = 2/15,
the last equalities holding in d = 3 (e = 1/2). Since
€ = 1/2 is quite small, we expect these exponents to be
quantitatively accurate.

The RG € = 7/2 — d expansion treatment presented
above is nicely complemented by an € = 4 — d expan-
sion arising from a different analytical continuation to d
dimensions, in which there are d — 2 soft coordinates r,
and only a single hard axis. The corresponding exponents
are given by fx = 3&/8 = 3/8, 93 = 3&/4 = 3/4, and
fa = &/8 = 1/8, with good agreement in d = 3 (except
for np) with the e = 7/2 — d expansion results. The ex-
act exponent relation for the € = 4 — d expansion is given
by4 — d + fj5 = 9p/2 + 29k and reassuringly agrees
with Eq. (10) in d = 3.

Further accuracy can be gained by weighted averag-
ing of the 7/2 — d and 4 — d expansions, according to
Nka — (4nga + Nxa)/5. The factor of 4 reflects the
higher accuracy of the 7/2 — d = € expansion. The pre-
diction for 7 is then made using the exact scaling relation,
giving,ind = 3, nx = 0.50, ng = 0.26,and nx = 0.13.
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We now study the translational and orientational order  elasticity. The former is characterized by the growth of
in the presence of this strong disorder-driven anomalous | smectic layer roughness with, e.g., ry:

d*k
(2m)3

C(ry) = ([u(ry,05,,0,) — u(0;,05,0,)]) = 2[1 — cos(ksry)]JA(K)KT G2(K), (11)

from which the translational correlation length ¢X (the in- | tical to that due to isotropic disorder [2]. In the opposite
verse of the x-ray diffraction peak width), can be computed  regime, ¢X > £9, there are three possibilities, depending
via the condition C(ry, = fﬁ‘) = a2, where a is the smec- on whether the anomalous elasticity sets in before or after
tic layer spacing. £X is determined by the relative order of  the layer roughness reaches a, and whether the isotropic-
many crossover length scales. For £X < &9, éXisiiden-  to-anisotropic crossover takes place near the harmonic or
| the anomalous elastic fixed point:
ENL ()% L <EX <&My >y
£X = § EYH()H ), £ < g <&y > (12)
fi(/\iﬁ)z/(n3+nk)(§i/EZJ\_’L)(i]B+77K)/(nB+7IK), < ¢S < Xy < y..

From these correlation lengths, we see that it is the ratio | small v and large A, we expect our system to be in the
a/Ag which determines whether £X lies in a length scale  orientationally disordered liquid phase in this range of pa-
regime in which anharmonic effects are important. For  rameters. On the other hand, for large y and small A the
small B, Az > a and anharmonic effects are unimportant.  system will exhibit long-ranged orientational order and, as
Note also that, in the strained length scale regime, ¢éX illustrated in Fig. 2a, will therefore be in the m = 1 BG
will depend on B, K, A, and y. Thus, one could test  phase. In analogy with the Lindemann criterion for melt-
the predictions of Eq. (12) by measuring the dependence  ing, the phase boundary is roughly determined by the con-
of £X on the strength of compression (i.e., y), which  dition (|én[2) = O(1). This leads to the phase boundary
could be adjusted directly. In all length scale regimes, the  quoted in Eq. (1), and illustrated in Fig. 2a.

x-ray correlation length is finite even as T — 0, signaling On the other hand, rather than rely on the untrustworthy
the destruction of the conventional (quasi-)long-ranged  (in 3D) 5 — € expansion, which predicts no SBG for
translational smectic order. isotropic (o = 0) disorder [2], we can infer the topology of

As emphasized in Ref. [2], this lack of translational  the phase diagram based on the preliminary experimental
order does not imply that the low-temperature phase re-  evidence [5], which suggests the stability of SBG for
placing the smectic is simply nematic (or isotropic). Our  weak isotropic disorder. This suggests that the m = 1 BG
detailed calculations [4] indicate that, in fact, despite the  extends all the way down to vanishing strain, o > 0, as
lack of the (quasi-)long-ranged smectic order dislocation illustrated in Fig. 2b.
loops remain bound for weak anisotropic disorder, and Light scattering, which measures director correlation
therefore the low-temperature phase replacing the smec-  (8n;(q)8n;(—q)) provides an independent means to test
tic must be distinct from the nematic, separated from it the predictions of the theory. Finally, since anomalous
by a thermodynamically sharp dislocation unbinding phase elasticity also implies a nonlinear stress-strain relation at
transition. We call this low-temperature phase the “m =1 arbitrarily weak stress, our predictions for it can be inde-

Bragg glass.” pendently probed in an ac acoustic experiment, searching
The stability of this exotic glass phase is contingentupon  for an unusually large second harmonic response.
our implicit assumption of long-ranged orientational (ne- L.R. and B.J. acknowledge support by the NSF DMR-

matic) order. That this assumption is valid can be eas- 9625111, the MRSEC DMR-9809555, and the A.P. Sloan
ily seen by computing (|6n|?) = (|[Vu|?), and taking into  and David and Lucile Packard Foundations. J.T. and
account the wave-vector—dependent elastic moduli K(k)  K.S. were supported by the NSF DMR-9634596.

and B(k) and disorder variance A(k), as given hy Egs. (9).
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