7,694 research outputs found
Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds
We present measurements of the mean dense core lifetimes in numerical
simulations of magnetically supercritical, turbulent, isothermal molecular
clouds, in order to compare with observational determinations. "Prestellar"
lifetimes (given as a function of the mean density within the cores, which in
turn is determined by the density threshold n_thr used to define them) are
consistent with observationally reported values, ranging from a few to several
free-fall times. We also present estimates of the fraction of cores in the
"prestellar", "stellar'', and "failed" (those cores that redisperse back into
the environment) stages as a function of n_thr. The number ratios are measured
indirectly in the simulations due to their resolution limitations. Our approach
contains one free parameter, the lifetime of a protostellar object t_yso (Class
0 + Class I stages), which is outside the realm of the simulations. Assuming a
value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores
ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3,
again in good agreement with observational determinations. We also find that
the mass in the failed cores is comparable to that in stellar cores at n_thr =
1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in
agreement with recent observational suggestions that at the latter densities
the cores are in general gravitationally dominated. We conclude by noting that
the timescale for core contraction and collapse is virtually the same in the
subcritical, ambipolar diffusion-mediated model of star formation, in the model
of star formation in turbulent supercritical clouds, and in a model
intermediate between the previous two, for currently accepted values of the
clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at
http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm
H-alpha Emission Variability in the gamma-ray Binary LS I +61 303
LS I +61 303 is an exceptionally rare example of a high mass X-ray binary
(HMXB) that also exhibits MeV-TeV emission, making it one of only a handful of
"gamma-ray binaries". Here we present H-alpha spectra that show strong
variability during the 26.5 day orbital period and over decadal time scales. We
detect evidence of a spiral density wave in the Be circumstellar disk over part
of the orbit. The H-alpha line profile also exhibits a dramatic emission burst
shortly before apastron, observed as a redshifted shoulder in the line profile,
as the compact source moves almost directly away from the observer. We
investigate several possible origins for this red shoulder, including an
accretion disk, mass transfer stream, and a compact pulsar wind nebula that
forms via a shock between the Be star's wind and the relativistic pulsar wind.Comment: Accepted to Ap
Permanent-magnet atom chips for the study of long, thin atom clouds
Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation
Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
The possibility to utilize different types of two-qubit gates on a single
quantum computing platform adds flexibility in the decomposition of quantum
algorithms. A larger hardware-native gate set may decrease the number of
required gates, provided that all gates are realized with high fidelity. Here,
we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a
parametrically driven tunable coupler that mediates the interaction between two
superconducting qubits. Using randomized benchmarking protocols we estimate an
error per gate of and fidelity for the CZ and the
iSWAP gate, respectively. We argue that spurious -type couplings are the
dominant error source for the iSWAP gate, and that phase stability of all
microwave drives is of utmost importance. Such differences in the achievable
fidelities for different two-qubit gates have to be taken into account when
mapping quantum algorithms to real hardware.Comment: 24 pages, including supplementary informatio
TMC-1C: an accreting starless core
We have mapped the starless core TMC-1C in a variety of molecular lines with
the IRAM 30m telescope. High density tracers show clear signs of
self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and
DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a
region of about 7,000 AU in radius around the dust continuum peak, which is the
most extended ``infalling'' region observed in a starless core with this
tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests
that their emission comes from a shell outside the colder interior traced by
the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to
~10 K away from the center. This is consistent with a volume density drop of
the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to
~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU).
The column density implied by the gas and dust show similar N2H+ and CO
depletion factors (f_D < 6). This can be explained with a simple scenario in
which: (i) the TMC-1C core is embedded in a relatively dense environment (H2
~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had
time to reach equilibrium values; (ii) the surrounding material (rich in CO and
N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than
3x10^5 yr, to account for the observed abundance of N2H+ across the core
(~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4
yr) or ``undepleted'' material from the surrounding envelope has fallen towards
it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure
Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.
Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (pâ€0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth
Long-Term Flux Monitoring of LSI +61 303 at 2.25 and 8.3 GHz
LSI +61 303 is an exotic binary system consisting of a ~10 Msun B star and a
compact object which is probably a neutron star. The system is associated with
the interesting radio source GT0236+610 that exhibits bright radio outbursts
with a period of 26.5 days. We report the results of continuous daily radio
interferometric observations of GT0236+610 at 2.25 and 8.3 GHz from 1994
January to 1996 February. The observations cover 25 complete (and 3 partial)
cycles with multiple observations each day. We detect substantial
cycle-to-cycle variability of the radio emission characterized by a rapid onset
of the radio flares followed by a more gradual decrease of the emission. We
detect a systematic change of the radio spectral index alpha which typically
becomes larger than zero at the onset of the radio outbursts. This behavior is
suggestive of expansion of material initially optically thick to radio
frequencies, indicating either that synchrotron or inverse Compton cooling are
important or that the free-free optical depth to the source is rapidly
changing. After two years of observations, we see only weak evidence for the
proposed 4-year periodic modulation in the peak flux of the outbursts. We
observe a secular trend in the outburst phases according the the best published
ephemeris. This trend indicates either orbital period evolution, or a drift in
outburst orbital phase in response to some other change in the system.Comment: 23 pages, LaTex, 7 figures, to appear in ApJ, v491, Dec 10th issue,
for associated info and preprints see
http://www.srl.caltech.edu/personnel/paulr/lsi.htm
Gamma-ray variability from wind clumping in HMXBs with jets
In the subclass of high-mass X-ray binaries known as "microquasars",
relativistic hadrons in the jets launched by the compact object can interact
with cold protons from the star's radiatively driven wind, producing pions that
then quickly decay into gamma rays. Since the resulting gamma-ray emissivity
depends on the target density, the detection of rapid variability in
microquasars with GLAST and the new generation of Cherenkov imaging arrays
could be used to probe the clumped structure of the stellar wind. We show here
that the fluctuation in gamma rays can be modeled using a "porosity length"
formalism, usually applied to characterize clumping effects. In particular, for
a porosity length defined by h=l/f, i.e. as the ratio of the characteristic
size l of clumps to their volume filling factor f, we find that the relative
fluctuation in gamma-ray emission in a binary with orbital separation a scales
as sqrt(h/pi a) in the "thin-jet" limit, and is reduced by a factor 1/sqrt(1 +
phi a/(2 l)) for a jet with a finite opening angle phi. For a thin jet and
quite moderate porosity length h ~ 0.03 a, this implies a ca. 10 % variation in
the gamma-ray emission. Moreover, the illumination of individual large clumps
might result in isolated flares, as has been recently observed in some massive
gamma-ray binaries.Comment: Accepted for publication in ApJ; 5 pages, 1 figur
A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency. First Tests
We compile a holistic scenario for molecular cloud (MC) evolution and control
of the star formation efficiency (SFE), and present a first set of numerical
tests of it. A {\it lossy} compressible cascade can generate density
fluctuations and further turbulence at small scales from large-scale motions,
implying that the turbulence in MCs may originate from the compressions that
form them. Below a {\it sonic} scale \ls, turbulence cannot induce any
further subfragmentation, nor be a dominant support agent against gravity.
Since progressively smaller density peaks contain progressively smaller
fractions of the mass, we expect the SFE to decrease with decreasing \ls, at
least when the cloud is globally supported by turbulence. Our numerical
experiments confirm this prediction. We also find that the collapsed mass
fraction in the simulations always saturates below 100% efficiency. This may be
due to the decreased mean density of the leftover interclump medium, which in
real clouds (not confined to a box) should then be more easily dispersed,
marking the ``death'' of the cloud. We identify two different functional
dependences (``modes'') of the SFE on \ls, which roughly correspond to
globally supported and unsupported cases. Globally supported runs with most of
the turbulent energy at the largest scales have similar SFEs to those of
unsupported runs, providing numerical evidence of the dual role of turbulence,
whereby large-scale turbulent modes induce collapse at smaller scales. We
tentatively suggest that these modes may correspond to the clustered and
isolated modes of star formation, although here they are seen to form part of a
continuum rather than being separate modes. Finally, we compare with previous
proposals that the relevant parameter is the energy injection scale.Comment: 6 pages, 3 figures. Uses emulateapj. Accepted in ApJ Letter
- âŠ