3,016 research outputs found

    Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)

    Full text link
    We present a technique to measure lightcurves of time-variable point sources on a spatially structured background from imaging data. The technique was developed to measure light curves of SNLS supernovae in order to infer their distances. This photometry technique performs simultaneous PSF photometry at the same sky position on an image series. We describe two implementations of the method: one that resamples images before measuring fluxes, and one which does not. In both instances, we sketch the key algorithms involved and present the validation using semi-artificial sources introduced in real images in order to assess the accuracy of the supernova flux measurements relative to that of surrounding stars. We describe the methods required to anchor these PSF fluxes to calibrated aperture catalogs, in order to derive SN magnitudes. We find a marginally significant bias of 2 mmag of the after-resampling method, and no bias at the mmag accuracy for the non-resampling method. Given surrounding star magnitudes, we determine the systematic uncertainty of SN magnitudes to be less than 1.5 mmag, which represents about one third of the current photometric calibration uncertainty affecting SN measurements. The SN photometry delivers several by-products: bright star PSF flux mea- surements which have a repeatability of about 0.6%, as for aperture measurements; we measure relative astrometric positions with a noise floor of 2.4 mas for a single-image bright star measurement; we show that in all bands of the MegaCam instrument, stars exhibit a profile linearly broadening with flux by about 0.5% over the whole brightness range.Comment: Accepted for publication in A&A. 20 page

    Self-consistent modelling of hot plasmas within non-extensive Tsallis' thermostatistics

    Full text link
    A study of the effects of non-extensivity on the modelling of atomic physics in hot dense plasmas is proposed within Tsallis' statistics. The electronic structure of the plasma is calculated through an average-atom model based on the minimization of the non-extensive free energy.Comment: submitted to "Eur. Phys. J. D

    Effect of heat treatment and aging on the mechanical loss and strength of hydroxide catalysis bonds between fused silica samples

    Get PDF
    Hydroxide catalysis bonds are used in the aLIGO gravitational wave detectors and are an essential technology within the mirror suspensions which allowed for detector sensitivities to be reached that enabled the first direct detections of gravitational waves. Methods aimed at further improving hydroxide catalysis bonds for future upgrades to these detectors, in order to increase detection rates and the number of detectable sources, are explored. Also, the effect on the bonds of an aLIGO suspension construction procedure involving heat, the fibre welding process, is investigated. Here we show that thermal treatments can be beneficial to improving some of the bond properties important to the mirror suspensions in interferometric gravitational wave detectors. It was found that heat treating bonds at 150\,^\circC increases bond strength by a factor of approximately 1.5 and a combination of bond ageing and heat treatment of the optics at 150\,\circC reduces the mechanical loss of a bond from 0.10 to 0.05. It is also shown that current construction procedures do not reduce bond strength

    24^{24}Mg(pp, α\alpha)21^{21}Na reaction study for spectroscopy of 21^{21}Na

    Full text link
    The 24^{24}Mg(pp, α\alpha)21^{21}Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in 21^{21}Na for the astrophysically important 17^{17}F(α,p\alpha, p)20^{20}Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched 24^{24}Mg solid targets were used. Recoiling 4^{4}He particles from the 24^{24}Mg(pp, α\alpha)21^{21}Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4^{4}He particles over a range of angles simultaneously. A new level at 6661 ±\pm 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21^{21}Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference on Accelerators and Beam Utilization (ICABU2014

    SiFTO: An Empirical Method for Fitting SNe Ia Light Curves

    Full text link
    We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree.Comment: Modified to better match published version in Ap

    Subluminous Type Ia Supernovae at High Redshift from the Supernova Legacy Survey

    Full text link
    The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: r(z)=A×Mgr(z)=A\times M_g, with A=(1.1±0.3)×10−14A=(1.1\pm0.3)\times10^{-14} SNe per year and solar mass.Comment: 19 pages, 27 figure
    • …
    corecore