234 research outputs found

    Ultrafast carrier relaxation in GaN, In_(0.05)Ga_(0.95)N and an In_(0.05)Ga_(0.95)/In_(0.15)Ga_(0.85)N Multiple Quantum Well

    Full text link
    Room temperature, wavelength non-degenerate ultrafast pump/probe measurements were performed on GaN and InGaN epilayers and an InGaN multiple quantum well structure. Carrier relaxation dynamics were investigated as a function of excitation wavelength and intensity. Spectrally-resolved sub-picosecond relaxation due to carrier redistribution and QW capture was found to depend sensitively on the wavelength of pump excitation. Moreover, for pump intensities above a threshold of 100 microJ/cm2, all samples demonstrated an additional emission feature arising from stimulated emission (SE). SE is evidenced as accelerated relaxation (< 10 ps) in the pump-probe data, fundamentally altering the re-distribution of carriers. Once SE and carrier redistribution is completed, a slower relaxation of up to 1 ns for GaN and InGaN epilayers, and 660 ps for the MQW sample, indicates carrier recombination through spontaneous emission.Comment: submitted to Phys. Rev.

    Improvements in quantum efficiency of excitonic emissions in ZnO epilayers by the elimination of point defects

    Get PDF
    科研費報告書収録論文(課題番号:18350092/研究代表者:大友明/高効率酸化亜鉛系青色・紫外発光素子の開発

    Self-regulated charge transfer and band tilt in nm-scale polar GaN films

    Full text link
    To date, the generic polarization of Bernardini, Fiorentini and Vanderbilt (PBFV) has been widely used to address the issue of polarity in III-V nitride semiconductors, but improvements in nitride materials and the performance of optoelectronic devices have been limited. The current first-principles calculation for the electronic structures of nm-scale [0001] GaN films show that the internal electric fields and the band tilt of these films are in opposite direction to those predicted by PBFV. Additionally, it is determined that an intrinsic self-regulated charge transfer across the film limits the electrostatic potential difference across the film, which renders the local conduction band energy minimum (at the Ga-terminated surface) approximately equal to the local valence band energy maximum (at the N-terminated surface). This effect is found to occur in films thicker than ~4nm

    Effects of macroscopic polarization in III-V nitride multi-quantum-wells

    Full text link
    Huge built-in electric fields have been predicted to exist in wurtzite III-V nitrides thin films and multilayers. Such fields originate from heterointerface discontinuities of the macroscopic bulk polarization of the nitrides. Here we discuss the background theory, the role of spontaneous polarization in this context, and the practical implications of built-in polarization fields in nitride nanostructures. To support our arguments, we present detailed self-consistent tight-binding simulations of typical nitride QW structures in which polarization effects are dominant.Comment: 11 pages, 9 figures, uses revtex/epsf. submitted to PR

    Electron-phonon renormalization of the absorption edge of the cuprous halides

    Full text link
    Compared to most tetrahedral semiconductors, the temperature dependence of the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small. CuCl and CuBr show a small increase of the gap E0E_0 with increasing temperature, with a change in the slope of E0E_0 vs. TT at around 150 K: above this temperature, the variation of E0E_0 with TT becomes even smaller. This unusual behavior has been clarified for CuCl by measurements of the low temperature gap vs. the isotopic masses of both constituents, yielding an anomalous negative shift with increasing copper mass. Here we report the isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of CuI. The measured isotope effects allow us to understand the corresponding temperature dependences, which we also report, to our knowledge for the first time, in the case of CuI. These results enable us to develop a more quantitative understanding of the phenomena mentioned for the three halides, and to interpret other anomalies reported for the temperature dependence of the absorption gap in copper and silver chalcogenides; similarities to the behavior observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    Recombination dynamics of a 268nm emission peak in Al0.53In0.11Ga0.36N∕Al0.58In0.02Ga0.40N multiple quantum wells

    Full text link
    Recombination dynamics of the 268 nm photoluminescence (PL) peak in a quaternary Al0.53In0.11Ga0.36N/Al0.58In0.02Ga0.40N multiple quantum well (MQW) grown on relaxed AlGaN templates were studied. Although the polarization field in the compressively strained Al0.53In0.11Ga0.36N wells was as high as 1.6 MV/cm, the value of integrated PL intensity at 300 K divided by that at 8 K (eta(int)) was as high as 1.2%. The value was similar to that obtained for the 285 nm PL peak in an Al0.30Ga0.70N/Al0.70Ga0.30N MQW (1.3%), though the A1N molar fraction in the wells was higher by a factor of 1.7. According to these results and the fact that time-resolved PL signal exhibited a stretched exponential decay shape, the improved eta(int) of the AlInGaN wells was attributed to a beneficial effect of the exciton localization as is the case with InGaN alloys; doping or alloying with InN was confirmed to work also on AlGaN in improving eta(int) to realize deep UV optoelectronic devices
    corecore