551 research outputs found

    Vertex Models and Random Labyrinths: Phase Diagrams for Ice-type Vertex Models

    Full text link
    We propose a simple geometric recipe for constructing phase diagrams for a general class of vertex models obeying the ice rule. The disordered phase maps onto the intersecting loop model which is interesting in its own right and is related to several other statistical mechanical models. This mapping is also useful in understanding some ordered phases of these vertex models as they correspond to the polymer loop models with cross-links in their vulcanised phase.Comment: 8 pages, 6 figure

    Ensemble dependence in the Random transverse-field Ising chain

    Get PDF
    In a disordered system one can either consider a microcanonical ensemble, where there is a precise constraint on the random variables, or a canonical ensemble where the variables are chosen according to a distribution without constraints. We address the question as to whether critical exponents in these two cases can differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correlations which span the whole system and are particularly sensitive to the constraint. This can \textit{appear} as a different exponent. We expect that this apparent dependence of exponents on ensemble is related to the integrability of the model, and would not occur in non-integrable models.Comment: 8 pages, 12 figure

    Invaded cluster algorithm for equilibrium critical points

    Full text link
    A new cluster algorithm based on invasion percolation is described. The algorithm samples the critical point of a spin system without a priori knowledge of the critical temperature and provides an efficient way to determine the critical temperature and other observables in the critical region. The method is illustrated for the two- and three-dimensional Ising models. The algorithm equilibrates spin configurations much faster than the closely related Swendsen-Wang algorithm.Comment: 13 pages RevTex and 4 Postscript figures. Submitted to Phys. Rev. Lett. Replacement corrects problem in printing figure

    Cluster Monte Carlo study of multi-component fluids of the Stillinger-Helfand and Widom-Rowlinson type

    Full text link
    Phase transitions of fluid mixtures of the type introduced by Stillinger and Helfand are studied using a continuum version of the invaded cluster algorithm. Particles of the same species do not interact, but particles of different types interact with each other via a repulsive potential. Examples of interactions include the Gaussian molecule potential and a repulsive step potential. Accurate values of the critical density, fugacity and magnetic exponent are found in two and three dimensions for the two-species model. The effect of varying the number of species and of introducing quenched impurities is also investigated. In all the cases studied, mixtures of qq-species are found to have properties similar to qq-state Potts models.Comment: 25 pages, 5 figure

    Avoided Critical Behavior in O(n) Systems

    Full text link
    Long-range frustrating interactions, even if their strength is infinitesimal, can give rise to a dramatic proliferations of ground or near-ground states. As a consequence, the ordering temperature can exhibit a discontinuous drop as a function of the frustration. A simple model of the doped Mott insulator, where the short-range tendency of the holes to phase separate competes with long-range Coulomb effects, exhibits this "avoided critical" behavior. This model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure

    Invaded cluster simulations of the XY model in two and three dimensions

    Full text link
    The invaded cluster algorithm is used to study the XY model in two and three dimensions up to sizes 2000^2 and 120^3 respectively. A soft spin O(2) model, in the same universality class as the 3D XY model, is also studied. The static critical properties of the model and the dynamical properties of the algorithm are reported. The results are K_c=0.45412(2) for the 3D XY model and eta=0.037(2) for the 3D XY universality class. For the 2D XY model the results are K_c=1.120(1) and eta=0.251(5). The invaded cluster algorithm does not show any critical slowing for the magnetization or critical temperature estimator for the 2D or 3D XY models.Comment: 30 pages, 11 figures, problem viewing figures corrected in v

    Graphical representations and cluster algorithms for critical points with fields

    Full text link
    A two-replica graphical representation and associated cluster algorithm is described that is applicable to ferromagnetic Ising systems with arbitrary fields. Critical points are associated with the percolation threshold of the graphical representation. Results from numerical simulations of the Ising model in a staggered field are presented. The dynamic exponent for the algorithm is measured to be less than 0.5.Comment: Revtex, 12 pages with 2 figure

    Algebraic Density Functionals

    Get PDF
    A systematic strategy for the calculation of density functionals (DFs) consists in coding informations about the density and the energy into polynomials of the degrees of freedom of wave functions. DFs and Kohn-Sham potentials (KSPs) are then obtained by standard elimination procedures of such degrees of freedom between the polynomials. Numerical examples illustrate the formalism.Comment: 7 pages, 2 figures, changes to extend discussion of Kohn-Sham potentials, and also for interacting particles. Accepted for publication in Physics Letters
    corecore