50 research outputs found

    Expression of HSP47 in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia

    Get PDF
    BACKGROUND: Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagens, and its expression is increased in various fibrotic diseases. The aim of this study was to determine whether quantitative immunohistochemical evaluation of the expression levels of HSP47, type I procollagen and α-smooth muscle actin (SMA) allows the differentiation of idiopathic usual interstitial pneumonia (UIP) from UIP associated with collagen vascular disease (CVD) and idiopathic nonspecific interstitial pneumonia (NSIP). METHODS: We reviewed surgical lung biopsy specimens of 19 patients with idiopathic UIP, 7 with CVD-associated UIP and 16 with idiopathic NSIP and assigned a score for the expression of HSP47, type I procollagen and α-SMA in type II pneumocytes and/or lung fibroblasts (score 0 = no; 1 = weak; 2 = moderate; 3 = strong staining). RESULTS: The expression level of HSP47 in type II pneumocytes of idiopathic UIP was significantly higher than in CVD-associated UIP and idiopathic NSIP. The expression of HSP47 in fibroblasts was significantly higher in idiopathic UIP and idiopathic NSIP than in CVD-associated UIP. The expression of type I procollagen in type II pneumocytes was significantly higher in idiopathic UIP than in idiopathic NSIP. The expression of type I procollagen in fibroblasts was not different in the three groups, while the expression of α-SMA in fibroblasts was significantly higher in idiopathic UIP than in idiopathic NSIP. CONCLUSION: Our results suggest the existence of different fibrotic pathways among these groups involved in the expression of HSP47 and type I procollagen

    Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis _ state of the art

    Get PDF
    Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs

    An Extensive Stanford Type A Aortic Dissection Involving Bilateral Carotid and Iliac Arteries

    Get PDF
    We present a rare case of continuous, extensive aortic dissection (AD) involving the bilateral common carotid arteries, the ascending, thoracic, and abdominal aorta, and bifurcation of the right common iliac artery. A 61-year-old man with history of chronic hypertension presented with a one-day history of chest pain, vertigo, left facial drooping, and left hemiparesis. Despite the presence of bilateral carotid bruits, doppler ultrasound of the neck was postponed, and the patient was treated with thrombolytic therapy for a presumed ischemic stroke. The patient's symptoms began to resolve within an hour of treatment, at which time treatment was withheld. Ultrasound performed the following day showed dissection of bilateral common carotid arteries, and CT angiography demonstrated extensive AD as described earlier. The patient subsequently underwent cardiovascular surgery and has been doing clinically well since then. AD has a myriad of manifestations depending on the involvement of aortic branches. Our paper illustrates the importance of having a high index of suspicion for AD when a patient presents with a picture of ischemic stroke, since overlapping signs and symptoms exist between AD and stroke. Differentiating between the two conditions is central to patient care as thrombolytic therapy can be helpful in stroke, but detrimental in AD
    corecore