4 research outputs found

    Can improved nutrition for Atlantic salmon in freshwater increase fish robustness, survival and growth after seawater transfer?

    Get PDF
    The loss of fish in the seawater (SW) phase of Atlantic salmon farming is high, and a major proportion of this loss occurs in the period just after SW transfer. In the current study, we hypothesize that improvements made to the diet during the freshwater (FW) stage affect fish growth, survival and robustness later in the SW stage. To test this, salmon parr were fed five experimental diets in FW at 12 °C. In addition to a commercial-like control diet, fish were fed a diet with changed FA composition aimed to be more like the natural feed of salmon in FW, a diet with increased concentrations of selected AA/N-compounds (methionine, lysine, threonine and taurine), a diet with increased concentrations of methionine and certain B-vitamins (folate, B12 and B6) and a final diet combining all of these potential improvements. At the time of SW transfer, the robustness of fish fed the different diets was tested by direct transfer to SW at three different temperatures (8, 12 and 16 °C, without prior acclimation), as well as transfer into open net pens, while fed on a common commercial diet. Growth and proximate composition of the fish did not differ between the diet groups. All diet groups seemed to handle transfer to SW well, and while SW transfer elicited a stress response in the fish, this was not significantly different between diet groups. Fish transferred to SW at 8 °C had higher mortality, reduced mucus layer and increased prevalence of scale loss and wounds, but this applied to all diet groups. Hence, direct transfer to SW at a lower temperature than the fish has been acclimated to cannot be recommended. At the two highest temperatures, there were some differences between the groups in the severity of cataracts. Apart from this, none of the health- or welfare related parameters measured showed any difference between the diet groups, indicating that the control diet was already sufficient

    Arsenic speciation and arsenic feed-to-fish transfer in Atlantic salmon fed marine low trophic feeds based blue mussel and kelp

    Get PDF
    Background: Aquaculture aims to reduce the environmental and climate footprints of feed production. Consequently, low trophic marine (LTM) resources such as blue mussels and kelp are potential candidates to be used as ingredients in salmon feed. It is relevant to study potential undesirables associated with their use, as well as assessing food safety by investigating their transfer from feed-to-fish. The marine biota is well known to contain relatively high levels of arsenic (As), which may be present in different organic forms depending on marine biota type and trophic position. Thus, it is important to not only obtain data on the concentrations of As, but also on the As species present in the raw materials, feed and farmed salmon when being fed novel LTM feed resources.Methods: Atlantic salmon were fed experimental diets for 70 days. A total of nine diets were prepared: four diets containing up to 4 % fermented kelp, three diets containing up to 11 % blue mussel silage, and one diet containing 12 % blue mussel meal, in addition to a standard reference diet containing 25 % fish meal. Concentrations of As and As species in feeds, faeces, liver and fillet of Atlantic salmon were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography coupled to ICP-MS (HPLC-ICP-MS), respectively.Results: The use of kelp or blue mussel-based feed ingredients increased the concentration of total As, but maximum level as defined in Directive 2002/32 EC and amendments was not exceeded. The concentrations found in the experimental feeds ranged from 3.4 mg kg−1 to 4.6 mg kg−1 ww. Arsenic speciation in the feed varied based on the ingredient, with arsenobetaine dominating in all feed samples (36–60 % of the total As), while arsenosugars (5.2–8.9 % of the total As) were abundant in kelp-included feed. The intestinal uptake of total As ranged from 67 % to 83 %, but retention in fillet only ranged from 2 % to 22 % and in liver from 0.3 % to 0.6 %, depending on the marine source used. Fish fed feeds containing blue mussel showed higher intestinal uptake of total As when compared with fish fed feeds containing fermented kelp. Fish fed fermented kelp-based feeds had higher retained concentrations of total As when comparing with fish fed feeds containing blue mussel. Despite relatively high intestinal uptake of total As, inorganic and organic As, the retained concentrations of As did not reflect the same trend.Conclusion: Although the use of LTM feed ingredients increased the level of total As in this feeds, salmon reared on these diets did not show increased total As levels. The well-known toxic inorganic As forms were not detected in salmon muscle reared on LTM diets, and the non-toxic organic AsB was the dominant As species that was retained in salmon muscle, while the organic AsSug forms were not. This study shows that speciation analysis of the LTM resources provides valuable information of the feed-to-fish transfer of As, needed to assess the food safety of farmed Atlantic salmon reared on novel low trophic feeds
    corecore