15,512 research outputs found

    Health-related quality of life in the WA HIV Cohort: 2008

    Get PDF
    Quality of life (QOL) is an important outcome of HIV treatment and a priority in the management of HIV. A new Patient-Reported Outcomes (PRO) questionnaire to measure the QOL in people living with HIV/AIDS (PLWHA) from different cultures and language groups has been developed. The instrument, PROQOL-HIV, has undergone psychometric validation in 791 individuals from 8 countries including 99 people from the WA HIV Cohort Study

    Stochastic resonance for nonequilibrium systems

    Get PDF
    Stochastic resonance (SR) is a prominent phenomenon in many natural and engineered noisy systems, whereby the response to a periodic forcing is greatly amplified when the intensity of the noise is tuned to within a specific range of values. We propose here a general mathematical framework based on large deviation theory and, specifically, on the theory of quasipotentials, for describing SR in noisy N -dimensional nonequilibrium systems possessing two metastable states and undergoing a periodically modulated forcing. The drift and the volatility fields of the equations of motion can be fairly general, and the competing attractors of the deterministic dynamics and the edge state living on the basin boundary can, in principle, feature chaotic dynamics. Similarly, the perturbation field of the forcing can be fairly general. Our approach is able to recover as special cases the classical results previously presented in the literature for systems obeying detailed balance and allows for expressing the parameters describing SR and the statistics of residence times in the two-state approximation in terms of the unperturbed drift field, the volatility field, and the perturbation field. We clarify which specific properties of the forcing are relevant for amplifying or suppressing SR in a system and classify forcings according to classes of equivalence. Our results indicate a route for a detailed understanding of SR in rather general systems

    Correlated electrons systems on the Apollonian network

    Get PDF
    Strongly correlated electrons on an Apollonian network are studied using the Hubbard model. Ground-state and thermodynamic properties, including specific heat, magnetic susceptibility, spin-spin correlation function, double occupancy and one-electron transfer, are evaluated applying direct diagonalization and quantum Monte Carlo. The results support several types of magnetic behavior. In the strong-coupling limit, the quantum anisotropic spin 1/2 Heisenberg model is used and the phase diagram is discussed using the renormalization group method. For ferromagnetic coupling, we always observe the existence of long-range order. For antiferromagnetic coupling, we find a paramagnetic phase for all finite temperatures.Comment: 7 pages, 8 figure

    Derivation of the Lattice Boltzmann Model for Relativistic Hydrodynamics

    Full text link
    A detailed derivation of the Lattice Boltzmann (LB) scheme for relativistic fluids recently proposed in Ref. [1], is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid dynamic problems, namely shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast-wave on massive interstellar clouds. Close to second order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time-steps, are reported

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as k−μk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    The influence of statistical properties of Fourier coefficients on random surfaces

    Full text link
    Many examples of natural systems can be described by random Gaussian surfaces. Much can be learned by analyzing the Fourier expansion of the surfaces, from which it is possible to determine the corresponding Hurst exponent and consequently establish the presence of scale invariance. We show that this symmetry is not affected by the distribution of the modulus of the Fourier coefficients. Furthermore, we investigate the role of the Fourier phases of random surfaces. In particular, we show how the surface is affected by a non-uniform distribution of phases

    Lattice Boltzmann scheme for relativistic fluids

    Full text link
    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.Comment: Submitted to PR
    • …
    corecore